Solitary Electromagnetic Waves in a Weakly Nonlinear Rhombic Waveguide Array

  • A. I. Maimistov


Electromagnetic waves propagating along the waveguides forming a rhombic one-dimensional lattice are considered. Two waveguides that are part of the unit cell are assumed to be made of negative-index material, while the third waveguide from the same array is composed of material with a positive refractive index and has cubic nonlinearity. The equations of tunneling-coupled solitary waves spreading in each waveguide are solved. Unlike discrete solitons, the waves are localized on the axis of waveguides, and the maximum position moves uniformly along the waveguides.



This work was supported by the Russian Foundation for Basic Research, project no. 18-02-00278.


  1. 1.
    Somekh, S., Garmire, E., Yariv, A., et al., Appl. Phys. Lett., 1973, vol. 22, no. 2, p. 46.ADSCrossRefGoogle Scholar
  2. 2.
    Pertsch, T., Zentgraf, T., Peschel, U., et al., Phys. Rev. Lett., 2002, vol. 88, p. 093901.ADSCrossRefGoogle Scholar
  3. 3.
    Staron, G., Weinert-Raczka, E., and Urban, P., Opto-Electron. Rev., 2005, vol. 93, p. 102.Google Scholar
  4. 4.
    Longhi, St., Phys. Rev. A, 2009, vol. 79, p. 033847.ADSCrossRefGoogle Scholar
  5. 5.
    Röpke, U., Bartelt, H., Unger, S., et al., Appl. Phys. B, 2011, vol. 104, p. 481.ADSCrossRefGoogle Scholar
  6. 6.
    Plougonven, N.B., Minot, Ch., Bouwmans, G., et al., Opt. Exp., 2014, vol. 22, no. 10, p. 12379.ADSCrossRefGoogle Scholar
  7. 7.
    Integrated Optics, Tamir, T., Ed., Springer, 1979.Google Scholar
  8. 8.
    Yariv, A., Xu, Y., Lee, R.K., and Scherer, A., Opt. Lett., 1999, vol. 24, p. 711.ADSCrossRefGoogle Scholar
  9. 9.
    Gorlach, M.A. and Poddubny, A.N., Phys. Rev. A, 2017, vol. 95, p. 033831.ADSCrossRefGoogle Scholar
  10. 10.
    Flach, S., Leykam, D., Bodyfelt, J.D., et al., Europhys. Lett., 2014, vol. 105, p. 30001.ADSCrossRefGoogle Scholar
  11. 11.
    Longhi, St., Opt. Lett., 2014, vol. 39, no. 20, p. 5892.ADSCrossRefGoogle Scholar
  12. 12.
    Ramachandran, A., Andreanov, A., and Flach, S., Phys. Rev. B, 2017, vol. 96, p. 161104(R).ADSCrossRefGoogle Scholar
  13. 13.
    Gligoric, G., Maluckov, A., Hadzievski, Lj., et al., Phys. Rev. B, 2016, vol. 94, p. 144302.ADSCrossRefGoogle Scholar
  14. 14.
    Morales-Inostroza, L. and Vicencio, R.A., Phys. Rev. A, 2016, vol. 94, p. 043831.ADSCrossRefGoogle Scholar
  15. 15.
    Mukherjee, S. and Thomson, R.R., Opt. Lett., 2015, vol. 40, no. 23, p. 5443.ADSCrossRefGoogle Scholar
  16. 16.
    Mukherjee, S., Spracklen, A., Choudhury, D., et al., Phys. Rev. Lett., 2015, vol. 114, p. 245504.ADSCrossRefGoogle Scholar
  17. 17.
    Maimistov, A.I. and Patrikeev, V.A., J. Phys.: Conf. Ser., 2016, vol. 737, p. 1088. doi 10.1088/1742-6596/737/1/012008Google Scholar
  18. 18.
    Maimistov, A.I., J. Opt., 2017, vol. 19, no. 4, p. 045502.ADSCrossRefGoogle Scholar
  19. 19.
    Kazantseva, E.V., Maimistov, A.I., and Ozhenko, S.S., Phys. Rev. A, 2009, vol. 80, no. 4, p. 043833.ADSCrossRefGoogle Scholar
  20. 20.
    Zezyulin, D.A., Konotop, V.V., and Abdullaev, F.K., Opt. Lett., 2012, vol. 37, no. 19, p. 3930.ADSCrossRefGoogle Scholar
  21. 21.
    Daino, B., Gregori, G., and Wabnitz, S., J. Appl. Phys., 1985, vol. 58, no. 12, p. 4512.ADSCrossRefGoogle Scholar
  22. 22.
    Maimistov, A.I., Sov. J. Quantum Electron., 1991, vol. 21, p. 687.ADSCrossRefGoogle Scholar
  23. 23.
    Rajaraman, R., Solitons and Instantons, North-Holland, 1982.zbMATHGoogle Scholar
  24. 24.
    Parto, M., Lopes-Aviles, H., Khajavikhan, M., et al., Phys. Rev. A, 2017, vol. 96, p. 043816.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations