Fourier Optics of Fractal Structures

  • A. V. AverchenkoEmail author
  • N. Yu. Konopaltseva
  • P. V. Korolenko
  • A. Yu. Mishin


The scaling characteristics of Fourier spectra of fractal structures are determined. Their stability and influence on cognitive processes associated in particular with the aesthetic aspects of perceiving objects with self-similarity criteria are estimated. Evidence of their heuristic importance for Fourier analysis results is presented using an example in which the properties of aperiodic multilayer structures and chaotic processes are considered.



  1. 1.
    Goodman, J.W., Introduction to Fourier Optics, McGraw-Hill, 1968.Google Scholar
  2. 2.
    Arzamastseva, G.V., Evtikhov, M.G., Lisovskii, F.V., and Mansvetova, E.G., Bull. Russ. Acad. Sci.: Phys., 2010, vol. 74, no. 10, p. 1370.CrossRefGoogle Scholar
  3. 3.
    Zotov, A.M., Korolenko, P.V., and Mishin, A.Yu., Crystallogr. Rep., 2010, vol. 55, no. 6, p. 964.ADSCrossRefGoogle Scholar
  4. 4.
    Albuquerque, E.L. and Cottam, M.G., Phys. Rep., 2003, vol. 376, p. 225.ADSCrossRefGoogle Scholar
  5. 5.
    Fesenko, V.I., Waves Random Complex Media, 2014, vol. 24, no. 2, p. 174.ADSCrossRefGoogle Scholar
  6. 6.
    Peitgen, H.-O., Jürgens, H., and Saupe, D., Chaos and Fractals, New York: Springer, 2004, 2nd ed.CrossRefzbMATHGoogle Scholar
  7. 7.
    Kashtanov, A.A., Korolenko, P.V., and Mishin, A.Yu., Health Educ. Millennium, 2017, vol. 19, no. 2, p. 90.Google Scholar
  8. 8.
    Mandelbrot, B.B., The Fractal Geometry of Nature, New York: W.H. Freeman and Company, 1982.zbMATHGoogle Scholar
  9. 9.
    Potapov, A.A., Radioelectron. Nanosyst. Inf. Technol., 2009, vol. 1, nos. 1–2, p. 64.Google Scholar
  10. 10.
    Korolenko, P.V., Maganova, M.S., and Mesnyankin, A.V., Novatsionnye metody analiza stokhasticheskikh protsessov i struktur v optike. Fraktal’nye i mul’tifraktal’nye metody, veivlet-preobrazovaniya. Uchebnoe posobie (Innovative Methods for Analysis of Stochastic Processes and Structures in Optics. Fractal and Multifractal Methods and Wavelet Transforms. Study Guide), Moscow: Mosk. Gos. Univ., 2004.Google Scholar
  11. 11.
    Pavlov, A.N. and Anishchenko, V.S., Izv. Sarat. Univ., Ser. Fiz., 2007, vol. 7, no. 1, p. 3.Google Scholar
  12. 12.
    Bergé, P., Pomeau, Y., and Vidal, C., Order within Chaos: Towards a Deterministic Approach to Turbulence, Wiley, 1986.zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Averchenko
    • 1
    Email author
  • N. Yu. Konopaltseva
    • 1
  • P. V. Korolenko
    • 1
    • 2
  • A. Yu. Mishin
    • 1
  1. 1.Faculty of Physics, Moscow State UniversityMoscowRussia
  2. 2.Lebedev Physical Institute, Russian Academy of SciencesMoscowRussia

Personalised recommendations