P-Odd Asymmetries in the Angular Distributions of Fragments from the Low-Energy Fission of Nuclei by Polarized Neutrons with Allowance for the Wriggling Vibrations of a Fissile Nucleus

  • S. G. KadmenskyEmail author
  • L. V. Titova
  • P. V. Kostryukov


Results are presented from investigating deviations of the coefficients of P-odd asymmetries in the angular distributions of fragments produced by the low-energy fissioning of actinide nuclei by polarized neutrons, calculated using the quantum fission theory with allowance for wriggling vibrations, from the coefficients of these asymmetries described by Bohr’s formula. By comparing relative errors of the experimental measurements of Р-odd asymmetry coefficients and deviations of the theoretical values of asymmetry coefficients, calculated with allowance for the wriggling vibrations of a fissile nucleus, from their values obtained using Bohr’s formula, estimates of wriggling vibration parameters \({{C}_{{\text{w}}}} \leqslant 30\) and \({{C}_{{\text{w}}}} \leqslant 15\) are determined for 233U and 235U nuclei, respectively, for which deviations from Bohr’s formula can be detected.



This work was supported by the Russian Foundation for Basic Research, project no. 15-02-03402.


  1. 1.
    Danilyan, G.V., Vodennikov, B.D., Dronyaev, V.P., Novitskii, V.V., Pavlov, V.S., and Borovlev, S.P., JETP Lett., 1977, vol. 26, p. 186.ADSGoogle Scholar
  2. 2.
    Bondarenko, L.N., Zhukov, S.V., Kuznetsov, V.L., Mostovoi, Yu.A., Beda, A.G., Vodennikov, B.D., Danilyan, G.V., Dronyaev, V.P., Kutsenko, V.A., Novitskii, V.V., Pavlov, V.S., Kolobashkin, V.M., Korobkina, E.I., Pevchev, Yu.F., and Sadchikov, A.G., JETP Lett., 1983, vol. 38, p. 168.ADSGoogle Scholar
  3. 3.
    Koetzle, A., et al., Nucl. Instrum. Methods Phys. Res., Sect. A, 2000, vol. 440, p. 750.Google Scholar
  4. 4.
    Belozerov, A.V., Beda, A.G., Burov, S.I., Danilyan, G.V., Martem’yanov, A.N., Pavlov, V.S., Shchenev, V.A., Bondarenko, L.H., Mostovoi, Yu.A., Geltenbort, G., Last, I., Schrekenbach, K., and Gonnenwein, F., JETP Lett., 1991, vol. 54, p. 132.ADSGoogle Scholar
  5. 5.
    Alfimenkov, V.P., et al., Yad. Fiz., 1995, vol. 58, p. 799.Google Scholar
  6. 6.
    Sushkov, O.P. and Flambaum, V.V., Sov. Phys. Usp., 1982, vol. 25, p. 1.ADSCrossRefGoogle Scholar
  7. 7.
    Bunakov, V.E. and Gudkov, V.P., Z. Phys. A, 1985, vol. 321, p. 277.ADSCrossRefGoogle Scholar
  8. 8.
    Kadmensky, S.G., Phys. At. Nucl., 2003, vol. 66, p. 1691.CrossRefGoogle Scholar
  9. 9.
    Bunakov, V.E. and Kadmensky, S.G., Bull. Russ. Acad. Sci.: Phys., 2008, vol. 71, p. 2030.Google Scholar
  10. 10.
    Kadmensky, S.G., Markushev, V.P., and Furman, W.I., Sov. J. Nucl. Phys., 1982, vol. 35, p. 166.Google Scholar
  11. 11.
    Bohr, A., Proc. Int. Conf. on the Peaceful Uses of Atomic Energy, Geneva, 1955, vol. 5, p. 200.Google Scholar
  12. 12.
    Kadmensky, S.G. and Rodionova, L.V., Phys. At. Nucl., 2003, vol. 66, p. 1219.CrossRefGoogle Scholar
  13. 13.
    Kadmensky, S.G., Bunakov, V.E., and Titova, L.V., Bull. Russ. Acad. Sci.: Phys., 2012, vol. 76, p. 1177.CrossRefGoogle Scholar
  14. 14.
    Bohr, A. and Mottelson, B., Nuclear Structure, New York: Benjamin, 1974, vol. 2.zbMATHGoogle Scholar
  15. 15.
    Kadmensky, S.G., Lyubashevsky, D.E., and Titova, L.V., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 7, p. 879.CrossRefGoogle Scholar
  16. 16.
    Kadmensky, S.G., Titova, L.V., and Lyubashevsky, D.E., Bull. Russ. Acad. Sci.: Phys., 2017, vol. 81, no. 6, p. 717.CrossRefGoogle Scholar
  17. 17.
    Nix, J.R. and Swiatecki, W.J., Nucl. Phys. A, 1965, vol. 71, p. 1.CrossRefGoogle Scholar
  18. 18.
    Davydov, A.S., Teoriya atomnogo yadra (Theory of the Atomic Nucleus), Moscow: Fizmatgiz, 1958.Google Scholar
  19. 19.
    Varshalovich, D.A., Moskalev, A.N., and Khersonskii, V.K., Kvantovaya teoriya uglovogo momenta (Quantum Theory of the Angular Momentum), Leningrad: Nauka, 1975.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • S. G. Kadmensky
    • 1
    Email author
  • L. V. Titova
    • 1
  • P. V. Kostryukov
    • 1
  1. 1.Voronezh State UniversityVoronezhRussia

Personalised recommendations