Advertisement

Bulletin of the Russian Academy of Sciences: Physics

, Volume 82, Issue 9, pp 1232–1235 | Cite as

Effect of a Platinum Sublayer on the Microstructure and Spontaneous Polarization of Thin Lithium Niobate Films Deposited on a Silicon Substrate

  • R. N. Zhukov
  • D. A. KiselevEmail author
  • T. S. Ilina
  • A. A. Temirov
  • I. V. Kubasov
  • A. S. Bykov
  • M. D. Malinkovich
  • Yu. N. Parkhomenko
  • A. G. Savchenko
Article
  • 26 Downloads

Abstract

the microstructure, value of self-polarization, and local piezoelectric hysteresis loops of LiNbO3 thin films synthesized on silicon substrates with a native SiOx layer and with a platinum layer are compared via scanning probe microscopy. It is found that smoother surfaces, smaller grain sizes, and a simultaneous higher self-polarization value and effective piezoelectric coefficient are typical of LiNbO3 films applied to a silicon substrate with a platinum sublayer.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kilburger, S., et al., Appl. Surf. Sci., 2007, vol. 253, p. 8263.ADSCrossRefGoogle Scholar
  2. 2.
    Griffel, G., et al., Thin Solid Films, 1985, vol. 126, p. 185.ADSCrossRefGoogle Scholar
  3. 3.
    Schwyn, S., Lehmann, H.W., and Widmer, R., J. Appl. Phys., 1992, vol. 72, no. 3, p. 1154.ADSCrossRefGoogle Scholar
  4. 4.
    Bornand, V., et al., Mater. Sci. Forum, 2002, vols. 408–412, p. 1573.Google Scholar
  5. 5.
    Gautier, B. and Bornand, V., Thin Solid Films, 2006, vol. 515, p. 1592.ADSCrossRefGoogle Scholar
  6. 6.
    Zhukov, R.N., et al., J. Alloys Compd., 2014, vol. 586, no. 1, p. 336.CrossRefGoogle Scholar
  7. 7.
    Bornand, V. and Papet, P., Mater. Chem. Phys., 2005, vol. 92, p. 424.CrossRefGoogle Scholar
  8. 8.
    Simoes, A.Z., et al., Mater. Charact., 2003, vol. 50, p. 239.CrossRefGoogle Scholar
  9. 9.
    Kiselev, D.A., et al., J. Nano Electron. Phys., 2018, vol. 10, p. 02009.Google Scholar
  10. 10.
    Horcas, I., et al., Rev. Sci. Instrum., 2007, vol. 78, no. 1, p. 013705.ADSCrossRefGoogle Scholar
  11. 11.
    Munoz, R.C., et al., Phys. Rev. B, 2000, vol. 62, p. 4686.ADSCrossRefGoogle Scholar
  12. 12.
    Kholkin, A.L., et al., Ferroelectrics, 2006, vol. 341, p. 3.CrossRefGoogle Scholar
  13. 13.
    Kiselev, D.A., Afanasiev, M.S., Levashov, S.A., and Chucheva, G.V., Phys. Solid State, 2015, vol. 57, no. 6, p. 1151.ADSCrossRefGoogle Scholar
  14. 14.
    Osipov, V.V., et al., Ferroelectrics, 2018, vol. 525, p. 76.CrossRefGoogle Scholar
  15. 15.
    Afanasjev, V.P., et al., J. Phys.: Condens. Matter, 2001, vol. 13, p. 8755.ADSGoogle Scholar
  16. 16.
    Volk, T.R., Gainutdinov, R.V., and Zhang, H.H., Appl. Phys. Lett., 2017, vol. 110, p. 132905.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • R. N. Zhukov
    • 1
  • D. A. Kiselev
    • 1
    Email author
  • T. S. Ilina
    • 1
  • A. A. Temirov
    • 1
  • I. V. Kubasov
    • 1
  • A. S. Bykov
    • 1
  • M. D. Malinkovich
    • 1
  • Yu. N. Parkhomenko
    • 1
  • A. G. Savchenko
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations