Bulletin of the Russian Academy of Sciences: Physics

, Volume 82, Issue 9, pp 1148–1157 | Cite as

Study of Three-Dimensional, Surface, and Linear Structures of Allotropic Carbon: Diffraction Spectra of Auger Electron Energy Losses

  • V. P. FilippovaEmail author
  • A. M. Glezer
  • Yu. A. Perlovich
  • O. A. Krymskaya


A theoretical approach is developed for determining the parameters of nanoscale crystal structures using diffraction spectra of Auger electron energy losses. The approach is based on modeling the radial distribution functions of atoms while allowing for the sizes of atomic structures, and on the geometry of surfaces of three-dimensional, surface, and linear objects intersecting with a sphere. Using the example of allotropic carbon phases, it is shown that the proposed technique allows assessment of a studied object’s thickness and the depth of the analyzed signal output with an accuracy of one atom’s diameter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gorelik, S.S., Rastorguev, L.N., and Skakov, Yu.A., Rentgenograficheskii i elektronnoopticheskii analiz (X-Ray and Electron-Optical Analysis), Moscow: Metallurgiya, 1970.Google Scholar
  2. 2.
    Utevskii, L.M., Difraktsionnaya elektronnaya mikroskopiya v metallovedenii (Diffraction Electron Microscopy in Metallography), Moscow: Metallurgiya, 1973.Google Scholar
  3. 3.
    Vekilova, G.V. and Ivanov, A.N., Kristallografiya, rentgenografiya i elektronnaya mikroskopiya, chast’ 3: Uchebnoe posobie (Crystallography, X-Ray Analysis, and Electron Microscopy, Part 3. Study Guide), Moscow: MISiS, 2007.Google Scholar
  4. 4.
    Svergun, D.I. and Feigin, L.A., Rentgenovskoe i neitronnoe malouglovoe rasseyanie (X-Ray and Neutron Small-Angle Scattering), Moscow: Nauka, 1986.Google Scholar
  5. 5.
    Glatter, O. and Kratky, O., Small-Angle X-Ray Scattering, London: Academic, 1982.Google Scholar
  6. 6.
    Kovalev, A.I., Mishina, V.P., Stsherbedinsky, G.V., et al., Vacuum, 1990, vol. 41, nos. 7–9, p. 1794.Google Scholar
  7. 7.
    Wainstein, D.L. and Kovalev, A.I., Surf. Interface Anal., 2002, vol. 34, p. 230.CrossRefGoogle Scholar
  8. 8.
    Prikhod’ko, E.V., Sistema nepolyarizovannykh ionnykh radiusov i ee ispol’zovanie dlya analiza elektronnogo stroeniya i svoistv veshchestv (The System of Unpolarized Ionic Radii and Its Use in the Analysis of the Electronic Structure and Properties of Materials), Kiev: Naukova Dumka, 1973.Google Scholar
  9. 9.
    Penkala, T., Zarys Krystalochemii, Warszawa: Państwowe Wydawnictwo Naukowe, 1972.Google Scholar
  10. 10.
    Pearson, W.B., The Crystal Chemistry and Physics of Metals and Alloys, New York: Wiley, 1972.Google Scholar
  11. 11.
    Emsley, J., The Elements, Clarendon, 1991.Google Scholar
  12. 12.
    Sladkov, A.M. and Kudryavtsev, Yu.P., Priroda, 1969, no. 5, p. 37.Google Scholar
  13. 13.
    Eletskii, A.V. and Smirnov, B.M., Phys.-Usp., 1995, vol. 38, p. 935.ADSCrossRefGoogle Scholar
  14. 14.
    Nechaev, Yu.S. and Veziroglu, T.N., Adv. Mater. Phys. Chem., 2013, vol. 3, p. 255.CrossRefGoogle Scholar
  15. 15.
    Frolov, V.V., Khimiya: Uchebnoe posobie (Chemistry: Textbook), Moscow: Vysshaya Shkola, 1986.Google Scholar
  16. 16.
    Filippova, V.P., Kunavin, S.A., and Pugachev, M.S., Inorg. Mater.: Appl. Res., 2015, vol. 6, no. 1, p. 1.CrossRefGoogle Scholar
  17. 17.
    Seah, M.P., in Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Briggs, D. and Seah, M.P., Eds., Chichester: Wiley, 1983.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. P. Filippova
    • 1
    Email author
  • A. M. Glezer
    • 1
    • 2
  • Yu. A. Perlovich
    • 3
  • O. A. Krymskaya
    • 3
  1. 1.Bardin Central Research Institute of Ferrous MetallurgyMoscowRussia
  2. 2.National University of Science and Technology MISiSMoscowRussia
  3. 3.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia

Personalised recommendations