Varying the Composition of Ferroelectric Films during Ion-Plasma Sputtering: Simulation and Experiment
- 6 Downloads
Abstract
Varying the elemental composition of ferroelectric thin films of barium strontium titanate, barium zirconate titanate, and barium stannate titanate solid solutions obtained by ion-plasma sputtering of ceramic targets at different pressures of the working gas is studied through simulation and experimentally. The experimental results are interpreted based on statistical simulation of the transport processes for fluxes of sputtered Ba, Sr, Sn, Zr, and Ti atoms in a gas medium. It is shown that the simulation results describe variations in the elemental composition satisfactorily (within 5%) in a wide range of working gas pressures. Theoretical and experimental studies enable us to choose the optimum values of technological parameters for obtaining ferroelectric thin films with specified elemental compositions that determine their electrophysical properties.
Preview
Unable to display preview. Download preview PDF.
References
- 1.Cole, M.W., Weiss, C.V., Ngo, E., et al., Appl. Phys. Lett., 2008, vol. 92, p.182.Google Scholar
- 2.Yang, L., Ponche, F., Wang, G., et al., Appl. Phys. Lett., 2010, vol. 97, p.162.Google Scholar
- 3.Vendik, O.G., Phys. Solid State, 2009, vol. 51, no. 7, p. 1529.ADSCrossRefGoogle Scholar
- 4.Luo, C., Ji, J., Ling, F., et al., J. Alloys Compd., 2016, vol. 687, p.458.CrossRefGoogle Scholar
- 5.Tumarkin, A.V., Tepina, E.R., Nenasheva, E.A., Kartenko, N.F., and Kozyrev, A.B., Tech. Phys., 2012, vol. 57, no. 6, p.787.CrossRefGoogle Scholar
- 6.Buslov, O.Yu., Keis, V.N., Kozyrev, A.B., Kotel’nikov, I.V., and Kulik, P.V., Tech. Phys., 2005, vol. 50, no. 9, p. 1195.CrossRefGoogle Scholar
- 7.Kozyrev, A.B., Ivanov, A., Soldatenkov, O.I., Tumarkin, A.V., Razumov, S.V., and Aigunova, S.Yu., Tech. Phys. Lett., 2001, vol. 27, no. 12, p. 1032.ADSCrossRefGoogle Scholar
- 8.Kozyrev, A.B., Gaidukov, M.M., Gagarin, A.G., Tumarkin, A.V., and Razumov, S.V., Tech. Phys. Lett., 2002, vol. 28, no. 3, p.239.ADSCrossRefGoogle Scholar
- 9.Tumarkin, A.V., Gagarin, A.G., Altynnikov, A.G., et al., Thin Solid Films, 2015, vol. 593, p.189.ADSCrossRefGoogle Scholar
- 10.Kim, J.W., Shima, H., Yamamoto, T., et al., Jpn. J. Appl. Phys., 2014, vol. 53, p. 09PB04.Google Scholar
- 11.Tumarkin, A.V., Razumov, S.V., Gagarin, A.G., Altynnikov, A.G., Stozharov, V.M., Kaptelov, E.Yu., Senkevich, S.V., and Pronin, I.P., Tech. Phys. Lett., 2016, vol. 42, no. 2, p.143.ADSCrossRefGoogle Scholar
- 12.Zhu, G., Yan, D., Xu, H., et al., Mater. Lett., 2015, vol. 140, p.155.CrossRefGoogle Scholar
- 13.Tumarkin, A., Stozharov, V., Altynnikov, A., et al., Integr. Ferroelectr., 2016, vol. 173, no. 1, p.157.Google Scholar
- 14.Cole, M.W., Ferroelectrics, 2014, vol. 470, p.67.CrossRefGoogle Scholar
- 15.Gaidukov, M.M., Tumarkin, M.M., Gagarin, A.G., and Kozyrev, A.B., Tech. Phys. Lett., 2014, vol. 40, no. 4, p.337.ADSCrossRefGoogle Scholar
- 16.Volpyas, V.A., Tumarkin, A.V., Mikhailov, A.K., Kozyrev, A.B., and Platonov, R.A., Tech. Phys. Lett., 2016, vol. 42, no. 7, p.758.ADSCrossRefGoogle Scholar
- 17.Tumarkin, A.V., Razumov, S.V., Volpyas, V.A., Gagarin, A.G., Odinets, A.A., Zlygostov, M.V., and Sapego, E.N., Tech. Phys., 2017, vol. 62, no. 10, p. 1592.CrossRefGoogle Scholar
- 18.Volpyas, V.A. and Kozyrev, A.B., J. Exp. Theor. Phys., 2011, vol. 113, no. 1, p.172.ADSCrossRefGoogle Scholar
- 19.Volpyas, V.A., Petrov, P.K., and Chakalov, R.A., Vacuum, 1999, vol. 52, p.427.CrossRefGoogle Scholar
- 20.Volpyas, V.A. and Dymashevski, P.M., Tech. Phys., 2001, vol. 46, no. 11, p. 1347.CrossRefGoogle Scholar
- 21.Hollmann, E.K., Volpyas, V.A., and Wordenweber, R., Phys. C, 2005, vol. 425, no. 3, p.101.ADSCrossRefGoogle Scholar
- 22.Afrosimov, V.V., Il’in, R.N., Karmanenko, S.F., et al., Thin Solid Films, 2005, vol. 492, p. 146.ADSCrossRefGoogle Scholar