Advertisement

Bulletin of the Russian Academy of Sciences: Physics

, Volume 81, Issue 9, pp 1090–1093 | Cite as

Divalent rare-earth ions Pr, Sm, Нo, Er, Tm, and Yb in crystals of alkaline-earth fluorides

  • T. Yu. Sizova
  • V. Yu. Veslopolova
  • R. Yu. Shendrik
  • A. V. Egranov
  • E. A. Radzhapov
  • A. A. Shalaev
Article
  • 41 Downloads

Abstract

The absorption spectra of radiation-colored CaF2, SrF2, and BaF2 crystals activated by trivalent Pr, Sm, Нo, Er, Tm, and Yb (rare-earth, RE) ions are studied. It is shown that ionizing radiation reduces the impurity ions to the divalent state. The temperature resistance of divalent RE ions of radiation-colored CaF2 crystals correlates with the chemical stability of the compounds with divalent RE ions. The photochromic centers are produced in CaF2-Pr crystal colored by radiation at room temperature and heated to 200°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McClure, D.S. and Kiss, Z., J. Chem. Phys., 1963, vol. 39, p. 3251.ADSCrossRefGoogle Scholar
  2. 2.
    Merz, J.I. and Pershan, P.S., Phys. Rev., 1967, vol. 162, p. 217.ADSCrossRefGoogle Scholar
  3. 3.
    Arkhangel’skaya, V.A., et al., Opt. Spektrosk., 1967, p. 509.Google Scholar
  4. 4.
    Bugaenko, T.Yu., Radzhabov, E.A., and Ivashechkin, V.F., Phys. Solid State, 2008, vol. 50, p. 1671.ADSCrossRefGoogle Scholar
  5. 5.
    Sizova, T. and Radzhabov, E., IEEE Trans. Nucl. Sci., 2012, vol. 59, p. 592098.ADSCrossRefGoogle Scholar
  6. 6.
    Catlow, C.R.A., J. Phys. C, 1979, vol. 12, p. 969.ADSCrossRefGoogle Scholar
  7. 7.
    Shcheulin, A.S., et al., J. Opt. Soc. Am. B, 2014, vol. 31, p. 248.ADSCrossRefGoogle Scholar
  8. 8.
    Radzhabov, E., Opt. Spectrosc., 2016, vol. 120, p. 123.CrossRefGoogle Scholar
  9. 9.
    Figura, P.V., Nepomnyashchikh, A.I., and Radzhabov, E.A., Opt. Spektrosk., 1988, vol. 65, no. 4, p. 940.Google Scholar
  10. 10.
    Sizova, T., Radzhabov, E., Shendrik, R., Egranov, A., and Shalaev, A., Radiat. Meas., 2016, vol. 90, p. 68.CrossRefGoogle Scholar
  11. 11.
    Wood, D.L. and Kaiser, W., Phys. Rev., 1962, vol. 126, p. 2079.ADSCrossRefGoogle Scholar
  12. 12.
    Lankchmanan, A.R. and Tiwari, S.S., Radiat. Prot. Dosim., 1993, vol. 47, p. 243.CrossRefGoogle Scholar
  13. 13.
    Weakliem, H.A. and Kiss, Z.J., Phys. Rev., 1967, vol. 157, no. 2, p. 277.ADSCrossRefGoogle Scholar
  14. 14.
    Kaczmarek, S.M., Tsuboi, T., Ito, M., Boulon, G., and Leniec, G., J. Phys.: Condens. Matter, 2005, vol. 17, p. 3771.ADSGoogle Scholar
  15. 15.
    Radzhabov, E. and Nepomnyashchikh, A., Solid State Commun., 2008, vol. 146, p. 376.ADSCrossRefGoogle Scholar
  16. 16.
    Hayes, W. and Stoneham, A., in Crystals with the Fluorite Structure: Electronic, Vibrational, and Defect Properties, Hayes, W., Ed., Oxford: Clarendon Press, 1974.Google Scholar
  17. 17.
    Meyer, G., in The Rare Earth Elements: Fundamentals and Applications, Atwood, D.A., Ed., Chichester: Wiley, 2012, p. 1.Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • T. Yu. Sizova
    • 1
  • V. Yu. Veslopolova
    • 2
  • R. Yu. Shendrik
    • 1
    • 2
  • A. V. Egranov
    • 1
    • 2
  • E. A. Radzhapov
    • 1
    • 2
  • A. A. Shalaev
    • 1
    • 2
  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk State UniversityIrkutskRussia

Personalised recommendations