Bulletin of the Russian Academy of Sciences: Physics

, Volume 81, Issue 9, pp 1058–1061 | Cite as

Divalent rare-earth ions in LaF3 crystals

  • E. A. Radzhabov
  • A. V. Samborsky


The optical spectra and electric conductivity of LaF3 crystals doped with 0.01, 0.1, and 0.3 mol % YbF3, where Yb was partly or completely recharged to the divalent state, are studied. The long-wavelength absorption band of 370 nm is caused by electrons transitioning from state 4f 14 to the level of anion vacancies. The remaining bands at 300–190 nm are caused by 4f 14–5d 14f 13 transitions in Yb2+. The bulk electric conductivity and peaks of the dielectric losses of LaF3–Yb2+ crystals are caused by Yb2+–anion vacancy dipoles. The activation energy of the reorientation of Yb dipoles is 0.58 eV. The optical and dielectric properties of Yb2+ centers are compared to those of Sm2+ and Eu2+ centers studied earlier in LaF3 crystals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Carnall, W., Goodman, G.L., Rajnak, K., and Rana, R.S., J. Chem. Phys., 1989, vol. 90, p. 3443.ADSCrossRefGoogle Scholar
  2. 2.
    Görlich, P., Karras, H., Kötitz, G., and Lehmann, R., Phys. Status Solidi (b), 1964, vol. 5, no. 3, p. 437; Görlich, P., Karras, H., Kötitz, G., and Lehmann, R., Phys. Status Solidi (b), 1964, vol. 6, no. 2, p. 277; Görlich, P., Karras, H., Kötitz, G., and Lehmann, R., Phys. Status Solidi (b), 1965, vol. 8, no. 2, p. 385.ADSCrossRefGoogle Scholar
  3. 3.
    Dieke, G.H., Spectra and Energy Levels of Rare Earth Ions in Crystals, New York: Interscience, 1968.Google Scholar
  4. 4.
    Radzhabov, E.A., Opt. Spectrosc., 2016, vol. 121, no. 4, p. 482.ADSCrossRefGoogle Scholar
  5. 5.
    Radzhabov, E.A. and Kozlovskii, V.A., Phys. Procedia, 2015, vol. 76, p. 47.ADSCrossRefGoogle Scholar
  6. 6.
    Radzhabov, E.A. and Shendrik, R.Yu., Radiat. Meas., 2016, vol. 90, p. 80.CrossRefGoogle Scholar
  7. 7.
    Heaps, W.S., Elias, L.R., and Yen, W.M., Phys. Rev. B, 1976, vol. 13, p. 94.ADSCrossRefGoogle Scholar
  8. 8.
    Rast, H.E., Caspers, H.H., and Miller, S.A., J. Chem. Phys., 1967, vol. 47, p. 3874.ADSCrossRefGoogle Scholar
  9. 9.
    Shcheulin, A.S., Angervaks, A.E., Semenova, T.S., et al., Appl. Phys. B, 2013, vol. 111, p. 551.ADSCrossRefGoogle Scholar
  10. 10.
    Ivanov-Shits, A.K. and Murin, I.V., Ionika tverdogo tela (Solid-State Ionics), St. Petersburg: S.-Peterb. Gos. Univ., 2000.Google Scholar
  11. 11.
    Roos, A., Franceschetti, D., and Schoonman, J., J. Phys. Chem. Solids, 1985, vol. 46, p. 645.ADSCrossRefGoogle Scholar
  12. 12.
    Schönhals, A. and Kremer, F., in Broadband Dielectric Spectroscopy, Springer, 2003, p. 59.CrossRefGoogle Scholar
  13. 13.
    Jia, Y.Q., J. Solid State Chem., 1991, vol. 95, p. 184.ADSCrossRefGoogle Scholar
  14. 14.
    Dorenbos, P., J. Lumin., 2013, vol. 135, p. 93.CrossRefGoogle Scholar
  15. 15.
    Zych, A., Ogieglo, J., Ronda, C., et al., J. Lumin., 2013, vol. 134, p. 174.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia
  2. 2.Irkutsk State UniversityIrkutskRussia

Personalised recommendations