The effects of external influences on the distribution of polarization in calcium barium niobate crystals of differing composition

  • O. V. Malyshkina
  • V. S. Lisitsin
  • J. Dec
  • T. Łukasiewicz
Proceedings of the International Interdisciplinary Symposium “Ordering in Minerals and Alloys” OMA-17 and Proceedings of the International Interdisciplinary Symposium “Order, Disorder, and the Properties of Oxides” ODPO-17


The pyroelectric properties and state of polarization of calcium barium niobate single crystals Ca x Ba1–x Nb2O6 (CBN) with x = 0.28, 0.30, and 0.32 are studied. It is shown that in contrast to CBN30 and CBN32 crystals, the effect of the alternating electric fields higher than the coercive field changes the state of polarization in the surface layer of the CBN28 crystal. At the same time, thermal cycling to temperatures higher than the Curie point leads to the formation of a system of antiparallel domains in CBN30 and CBN32 crystals, and to complete depolarization of CBN28 crystals.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kuz’minov, Yu.S., Segnetoelektricheskie kristally dlya upravleniya lazernym izlucheniem (Ferroelectrical Crystals for Controlling Laser Radiation), Moscow: Nauka, 1982.Google Scholar
  2. 2.
    Smolenskii, G.A., Bokov, V.A., Isupov, V.A., et al., Fizika segnetoelektricheskikh yavlenii (Physics of Ferroelectrical Phenomena), Leningrad: Nauka, 1985.Google Scholar
  3. 3.
    Isupov, V.A., Ferroelectrics, 1985, vol. 65, p. 181.CrossRefGoogle Scholar
  4. 4.
    Cross, L.E., Ferroelectrics, 1994, vol. 151, p. 305.CrossRefGoogle Scholar
  5. 5.
    Kleemann, W., J. Mater. Sci., 2006, vol. 41, p. 129.ADSCrossRefGoogle Scholar
  6. 6.
    Volk, T.R., Salobutin, V.Yu., Ivleva, L.I., Polozkov, N.M., Pankrath, R., and Woehlecke, M., Phys. Solid State, 2000, vol. 42, p. 2129.ADSCrossRefGoogle Scholar
  7. 7.
    Esser, M., Burianek, M., Klimm, D., and Muhlberg, M., J. Cryst. Growth, 2002, vol. 240, p. 1.ADSCrossRefGoogle Scholar
  8. 8.
    Song, H., Zhang, H., Xu, X., et al., Mater. Res. Bull., 2005, vol. 40, p. 643.CrossRefGoogle Scholar
  9. 9.
    Qi, Y.J., Lu, C.J., Zhu, J., et al., Appl. Phys. Lett., 2005, vol. 87, p. 082904.ADSCrossRefGoogle Scholar
  10. 10.
    Heine, U., Voelker, U., Betzler, K., Burianek, M., and Muehlberg, M., New J. Phys., 2009, vol. 11, p. 083021.ADSCrossRefGoogle Scholar
  11. 11.
    Pandey, Ch.Sh., Schreuer, J., Burianek, M., and Muehlberg, M., Phys. Rev. B, 2011, vol. 84, p. 174102.ADSCrossRefGoogle Scholar
  12. 12.
    Malyshkina, O.V. and Movchikova, A.A., Phys. Solid State, 2009, vol. 51, p. 1381.ADSCrossRefGoogle Scholar
  13. 13.
    Malyshkina, O.V., Movchikova, A.A., Grechishkin, R.M., and Kalugina, O.N., Ferroelectrics, 2010, vol. 400, p. 63.CrossRefGoogle Scholar
  14. 14.
    Bogomolov, A.A. and Malyshkina, O.V., Izv. Akad. Nauk, Ser. Fiz., 1993, vol. 57, no. 3, p. 199.Google Scholar
  15. 15.
    Malyshkina, O.V. and Movchikova, A.A., Vestn. Tomsk. Gos. Univ., Ser. Fiz., 2011, no. 13, p. 63.Google Scholar
  16. 16.
    Malyshkina, O.V., Lisitsin, V.S., Dec, J., and Łukasiewicz, T., Phys. Solid State, 2014, vol. 56, no. 9, p. 1824.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • O. V. Malyshkina
    • 1
  • V. S. Lisitsin
    • 1
  • J. Dec
    • 2
  • T. Łukasiewicz
    • 3
  1. 1.Tver State UniversityTverRussia
  2. 2.Institute of Materials ScienceUniversity of SilesiaKatowicePoland
  3. 3.Institute of Electronic Materials TechnologyWarsawPoland

Personalised recommendations