Advertisement

Studying the mechanisms of steel sheet perforation by the radiation of a continuous-wave fiber laser

  • G. G. Gladush
  • A. F. Glova
  • V. I. Golovichev
  • S. V. Gvozdev
  • A. G. Krasyukov
  • A. Yu. Lysikov
  • V. K. Rerikh
  • M. D. Taran
Proceedings of the XI Conference “Lasers and Laser Information Technologies: Fundamental Problems and Applications” 2. Laser Technologies of Materials Processing

Abstract

Aspects of steel sheet perforation are studied experimentally. Calculations show that the mechanisms of thin sheet perforation change as the focal spot size is increased at a constant laser power. If the spot is small, the melt is removed and the film is disrupted by steel boiling in the spot center. With larger spots, the melt is removed by the force of gravity. The hole diameter grows along with the focal spot size and sheet thickness and is reduced upon an increase in laser power.

Keywords

Perforation Focal Spot Hole Diameter Sheet Thickness Spot Center 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ready, J.F., Effects of High-Power Laser Radiation, Acad. Press, 1971.Google Scholar
  2. 2.
    Anisimov, S.M., Imas, Ya.A., Romanov, G.S., et al., Deistvie izlucheniya bol’shoi moshchnosti na metally (The Effect of High-Power Radiation on Metals), Moscow Nauka, 1970.Google Scholar
  3. 3.
    Allmen, M.J., Appl. Phys., 1976, vol. 47, p. 5460.CrossRefGoogle Scholar
  4. 4.
    Batanov, V.A. and Fedorov, V.B., JETP Lett., 1973, vol. 17, p. 247.ADSGoogle Scholar
  5. 5.
    Vedenov, A.A. and Gladush, G.G., Fizicheskie protsessy pri lazernoi obrabotke materialov (Physical Processes in Laser Treatment of Materials), Moscow Energoatomizdat, 1985.Google Scholar
  6. 6.
    Glova, A.F., Drobyazko, S.V., Vavilin, O.I., and Shvom, E.M., Quantum Electron., 2002, vol. 32, p. 169.ADSCrossRefGoogle Scholar
  7. 7.
    Antonova, L.I., Gladush, G.G., Glova, A.F., et al., Quantum Electron., 2011, vol. 41, no. 5, p. 453.ADSCrossRefGoogle Scholar
  8. 8.
    Vostrikov, V.G., Gavrilyuk, V.D., Krasyukov, A.G., et al., Khim. Neftegazov. Mashinostr., 2001, no. 5, p. 52.Google Scholar
  9. 9.
    Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford Univ. Press, 1986.zbMATHGoogle Scholar
  10. 10.
    Gladush, G.G. and Smurov, I., Physics of Laser Material Processing, Theory and Experiment, Berlin, Heidelberg Springer-Verlag, 2011.CrossRefGoogle Scholar
  11. 11.
    Takashi, Y., in Proc. Int. Symp. on Mathematical Modeling and Numerical Simulation in Continuum Mechanics (Yamaguchi, 2000), New York: Springer, 2002, p. 57.Google Scholar
  12. 12.
    Motzkus, C., Etude de la mise en suspension de particules lors de l’impact de gouttes, Thesis, Université Paris-Est Créteil Val de Marne, 2007.Google Scholar
  13. 13.
    Nichols, B.D., Hirt, C.W., and Hotchkiss, R.S., SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries, 1980.Google Scholar
  14. 14.
    Hirt, C.W. and Nichols, B.D., J. Comput. Phys., 1981, vol. 39, p. 201.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • G. G. Gladush
    • 1
    • 2
  • A. F. Glova
    • 2
    • 3
  • V. I. Golovichev
    • 4
  • S. V. Gvozdev
    • 2
  • A. G. Krasyukov
    • 2
  • A. Yu. Lysikov
    • 2
  • V. K. Rerikh
    • 2
  • M. D. Taran
    • 2
  1. 1.Institute of Laser and Information TechnologiesRussian Academy of SciencesShatura, Moscow oblastRussia
  2. 2.Troitsk Institute for Innovation and Fusion ResearchMoscow, TroitskRussia
  3. 3.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  4. 4.Chalmers University of TechnologyGothenburgSweden

Personalised recommendations