A new approach to probing the depths of multilayer structures in SEM

Proceedings of the XXV Russian Conference on Electron Microscopy (RCEM-2014)


A new technique is proposed for determining the thickness of discrete layers in multilayered structures from images of the surface irradiated with a stationary focused electron beam. The interaction between backscattered electrons (BSEs) with residual hydrocarbons results in the formation of a ring-shaped carbonaceous layer surrounding the primary beam spot. The ring diameter varies with the composition and thickness of the layers traversed by the BSEs. Direct measurements are compared to predictions based on a BSE spatial distribution obtained via Monte Carlo simulation of the scattering. Capabilities of the method are demonstrated for Pt/C/Au and Pt/C/Au/Al systems. The sensitivity of the method is sufficiently high to distinguish an amorphous carbon layer no more than 20 nm thick deposited by arc evaporation and separating the bulk Pt from an island film of Au.


Carbon Ring Ring Diameter Ring Radius Island Film Constant Irradiation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aristov, V.V., Rau, E.I., and Yakimov, E.B., Phys. Status Solidi A, 1995, vol. 150, p. 211.CrossRefADSGoogle Scholar
  2. 2.
    Baciocchi, M., Di Fabrizio, E., Gentili, M., Grella, L., et al., J. Vac. Sci. Technol. B, 1995, vol. 13, p. 2676.CrossRefGoogle Scholar
  3. 3.
    Haimovich, J., Leibold, K., and Staudt, G., AMP J. Technol., 1996, vol. 5, p. 65.Google Scholar
  4. 4.
    Niedrig, H. and Rau, E.I., Nucl. Instrum. Methods Phys. Res. B, 1998, vol. 142, p. 523.CrossRefADSGoogle Scholar
  5. 5.
    Schlichting, F., Berger, D., and Niedrig, H., Scanning, 1999, vol. 21, p. 197.CrossRefGoogle Scholar
  6. 6.
    Rau, E.I. and Reimer, L., Scanning, 2001, vol. 23, p. 235.CrossRefGoogle Scholar
  7. 7.
    Rau, E., Hoffmeister, H., Sennov, R., and Kohl, H., J. Phys. D: Appl. Phys., 2002, vol. 35, p. 1433.CrossRefADSGoogle Scholar
  8. 8.
    Merli, P.G., Morandi, V., and Corticelli, F., Ultramicroscopy, 2003, vol. 94, p. 89.CrossRefGoogle Scholar
  9. 9.
    Gignac, L.H., Kawasaki, M., Boettcher, S.H., and Wells, O.C., J. Appl. Phys., 2005, vol. 97, p. 114506.CrossRefADSGoogle Scholar
  10. 10.
    Gostev, A.V., Orlovskii, N.A., Rau, E.I., and Trubitsyn, A.A., Tech. Phys., 2013, vol. 58, no. 3, p. 447.CrossRefGoogle Scholar
  11. 11.
    Zhdanov, G.S., RF Patent 2453546, 2012.Google Scholar
  12. 12.
    Kanaya, K. and Okayama, S., J. Phys. D: Appl. Phys., 1972, vol. 5, p. 4358.Google Scholar
  13. 13.
    Rishton, S.A. and Kern, D.P., J. Vac. Sci. Technol., 1987, vol. 5, p. 135.CrossRefGoogle Scholar
  14. 14.
    Anderson, E.H., Olynick, D.L., Chao, W., and Harteneck, B., J. Vac. Sci. Technol., 2001, vol. 19, p. 2504.CrossRefGoogle Scholar
  15. 15.
    Czaplewski, D.A., Holt, M.V., and Ocola, L.E., Nanotecnology, 2013, vol. 24, p. 305302.CrossRefGoogle Scholar
  16. 16.
    Zhdanov, G.S., Poverkhnost’, 1983, no. 1, p. 65.Google Scholar
  17. 17.
    Drouin, D., Couture, A.R., Joly, D., Tastet, X., Aimez, V., and Gauvin, R., Scanning, 2007, vol. 29, p. 92.CrossRefGoogle Scholar
  18. 18.
    Reimer, L., Scanning Electron Microscopy, Berlin: Springer, 1985.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations