Advertisement

Doped CdTe-based quantum dots

  • A. N. Kravtsova
  • K. A. Lomachenko
  • S. A. Suchkova
  • I. A. Pankin
  • M. B. Fayn
  • A. L. Bugaev
  • A. V. Soldatov
Proceedings of the International Symposium “Ordering in Minerals and Alloys” OMA-17 and Proceedings of the International Symposium “Order, Disorder, and Properties of Oxides” ODPO-17

Abstract

Colloidal semiconductor CdTe-based quantum dots are investigated. An ab initio computer design of quantum dots based on nanoparticles of CdTe and CdTe doped with atoms of transition elements (Co, Mn) is executed. Partial densities of the electron states of the investigated quantum dots are calculated. The sensitivity of X-ray absorption near edge structure (XANES) spectroscopy for verifying the parameters of the nanoscale atomic structure of small quantum dots based on CdTe, and for determining the parameters of the local environment around cadmium atoms and doping atoms in quantum dots was proved.

Keywords

Doping Atom Cadmium Atom Colloidal Semiconductor Elec Tronic Structure CdTe Nanoparticle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cadmium Telluride Quantum Dots. Advances and Applications, Donegan, J. and Rakovich, Y., Eds., New York: Taylor & Francis, 2013.Google Scholar
  2. 2.
    Thi Dieu Thuy Ung, Thi Kim Chi Tran, Thu Nga Pham, Duc Nghia Nguyen, Duy Khang Dinh, and Quang Liem Nguye, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2012, vol. 3, p. 043001.ADSGoogle Scholar
  3. 3.
    Ung Thi Dieu Thuy, Pham Song Toan, Tran Thi Kim Chi, Dinh Duy Khang, and Nguyen Quang Liem, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2010, vol. 1, p. 045009.Google Scholar
  4. 4.
    Chiang, W.-Y., Okuhata, T., Usman, A., Tamai, N., and Masuhara, H., J. Phys. Chem. B, 2014, vol. 118, no. 49, p. 14010.CrossRefGoogle Scholar
  5. 5.
    Seal, P., Sen, S., and Chakrabarti, S., Chem. Phys., 2010, vol. 367, p. 152.CrossRefADSGoogle Scholar
  6. 6.
    Sriram, S. and Chandiramouli, R., Res. Chem. Intermed., 2015, vol. 41, no. 4, p. 2095. doi 10.1007/s11164-0131334-6CrossRefGoogle Scholar
  7. 7.
    Alnemrat, S., Park, Y.H., and Vasiliev, I., Phys. E, 2014, vol. 57, p. 96.CrossRefGoogle Scholar
  8. 8.
    Lin, X., Xu, Sh., Wang, Ch., Wanga, Zh., and Cui, Y., RSC Adv., 2014, vol. 4, p. 4993.CrossRefGoogle Scholar
  9. 9.
    Dhayal, S.S., Ramaniah, L.M., Ruda, H.E., and Nair, S.V., J. Chem. Phys., 2014, vol. 141, p. 204702.CrossRefADSGoogle Scholar
  10. 10.
    Groeneveld, E., Delerue, Ch., Allan, G., et al., J. Phys. Chem., 2012, vol. 116, p. 23160.Google Scholar
  11. 11.
    Al-Douri, Y., Baaziz, H., Charifi, Z., et al., Renewable Energy, 2012, vol. 45, p. 232.CrossRefGoogle Scholar
  12. 12.
    Haram, S.K., Kshirsagar, A., Gujarathi, Y.D., et al., J. Phys. Chem., 2011, vol. 115, p. 6243.CrossRefGoogle Scholar
  13. 13.
    Kuznetsov, A.E. and Beratan, D.E., J. Phys. Chem., 2014, vol. 118, p. 7094.Google Scholar
  14. 14.
    Azpiroz, J.M., Ugalde, J.M., and Infante, I., J. Chem. Theory Comput., 2013, vol. 10, no. 1, p. 76.CrossRefGoogle Scholar
  15. 15.
    te Velde, G., Bickelhaupt, F.M., Baerends, E.J., et al., J. Comput. Chem., 2001, vol. 22, p. 931.CrossRefGoogle Scholar
  16. 16.
    Rabadanov, M.Kh., Verin, I.A., Ivanov, Yu.M., and Smirnov, V.I., Crystallogr. Rep., 2001, vol. 46, no. 4, p. 636.CrossRefADSGoogle Scholar
  17. 17.
    Grimme, S., Ehrlich, S., and Goerigk, L., J. Comput. Chem., 2011, vol. 32, p. 1457.CrossRefGoogle Scholar
  18. 18.
    Bryleva, M.A., Kravtsova, A.N., Shcherbakov, I.N., et al., J. Struct. Chem., 2012, vol. 53, no. 2, p. 295.CrossRefGoogle Scholar
  19. 19.
    Evsyukova, M.A., Kravtsova, A.N., Shcherbakov, I.N., et al., J. Struct. Chem., 2010, vol. 51, no. 6, p. 1075.CrossRefGoogle Scholar
  20. 20.
    Rehr, J.J., Kas, J.J., Vila, F.D., et al., Phys. Chem. Chem. Phys., 2010, vol. 12, p. 5503.CrossRefGoogle Scholar
  21. 21.
    Rehr, J.J., Kas, J.J., Prange, M.P., et al., C. R. Phys., 2009, vol. 10, no. 6, p. 548.CrossRefADSGoogle Scholar
  22. 22.
    Rehr, J.J. and Albers, R.C., Rev. Mod. Phys., 2000, vol. 72, p. 621.CrossRefADSGoogle Scholar
  23. 23.
    Kravtsova, A.N., Lomachenko, K.A., Soldatov, A.V., et al., J. Electron Spectrosc. Relat. Phenom., 2014, vol. 195, p. 189.CrossRefGoogle Scholar
  24. 24.
    Polozhentsev, O.E., Bryleva, M.A., Kravtsova, A.N., Kochkina, V.K., and Soldatov, A.V., Bull. Russ. Acad. Sci.: Phys., 2015, vol. 79, no. 9, p. 1173.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. N. Kravtsova
    • 1
  • K. A. Lomachenko
    • 1
  • S. A. Suchkova
    • 1
  • I. A. Pankin
    • 1
  • M. B. Fayn
    • 1
  • A. L. Bugaev
    • 1
  • A. V. Soldatov
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia

Personalised recommendations