Bulletin of the Russian Academy of Sciences: Physics

, Volume 79, Issue 9, pp 1093–1097 | Cite as

Creating a developed surface of copper electrolytic coatings via mechanical activation of the cathode with subsequent thermal treatment

  • N. N. Gryzunova
  • A. A. Vikarchuk
  • V. V. Bekin
  • A. E. Romanov
Proceedings of the VIII International Conference “Phase Transitions and the Strength of Crystals”
  • 29 Downloads

Abstract

A technique for the production of electrodeposited copper coatings with developed surfaces is proposed. It is shown that the mechanical activation of a metallic carrier during the electrodeposition of copper onto it and subsequent thermal treatment allow us to increase the specific surface area of the catalyst by a factor of several tens.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hildenbrand, H.-H. and Lintz, H.-G., Appl. Catal., 1990, vol. 65, p. 241.CrossRefGoogle Scholar
  2. 2.
    Molinari, R., Poerio, T., and Argurio, P., Desalination, 2009, vol. 241, p. 22.CrossRefGoogle Scholar
  3. 3.
    Hausser, A., Trautmann, M., and Roduner, E., Chem. Commun., 2011, vol. 47, p. 6954.CrossRefGoogle Scholar
  4. 4.
    Sarkar, B., Prajapati, P., Tiwari, R., et al., Green Chem., 2012, vol. 14, p. 2600.CrossRefGoogle Scholar
  5. 5.
    Brazlauskas, M. and Kitrys, S., Chin. J. Catal., 2008, vol. 29, p. 25.CrossRefGoogle Scholar
  6. 6.
    Chen, H., Zhang, H., and Yan, Y., Chem. Eng. Sci., 2014, vol. 111, p. 313.CrossRefGoogle Scholar
  7. 7.
    Zhao, T.-S., Zhang, K., Chen, X., et al., Catal. Today, 2010, vol. 149, p. 98.CrossRefGoogle Scholar
  8. 8.
    Heracleousa, E., Liakakoua, E.T., Lappas, A.A., and Lemonidou, A.A., Appl. Catal. A, 2013, vol. 455, p. 145.CrossRefGoogle Scholar
  9. 9.
    Duan, Z., Ma, G., and Zhang, W., Bull. Korean Chem. Soc., 2012, vol. 33, p. 4003.CrossRefGoogle Scholar
  10. 10.
    Vikarchuk, A.A. and Romanov, A.E., Fundam. Probl. Sovrem. Materialoved., 2014, vol. 11, no. 1, p. 87.Google Scholar
  11. 11.
    Yasnikov, I.S., Vikarchuk, A.A, Denisova, D.A., et al., Tech. Phys., 2007, vol. 77, no. 10, p. 1328.CrossRefGoogle Scholar
  12. 12.
    Vikarchuk, A.A., Gryzunova, N.N., and Dorogov, M.V., Materialovedenie, 2011, no. 8, p. 48.Google Scholar
  13. 13.
    Gryzunova, N.N., Vikarchuk, A.A., Shafeev, M.R., and Romanov, A.E., Mater. Phys. Mech., 2014, vol. 21, p. 119.Google Scholar
  14. 14.
    Belyaev, V.N., Lobunets, A.V., Bataev, V.A., and Gontarenko, A.S., Obrab. Met., 2011, no. 3, p. 85.Google Scholar
  15. 15.
    Rybin, V.V., Bol’shie plasticheskie deformatsii i razrushenie metallov (Great Plastic Deformations and Fracture of Metals), Moscow: Metallurgiya, 1986.Google Scholar
  16. 16.
    Romanov, A.E. and Kolesnikova, A.L., Prog. Mater. Sci., 2009, vol. 54, p. 740.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • N. N. Gryzunova
    • 1
  • A. A. Vikarchuk
    • 1
  • V. V. Bekin
    • 1
  • A. E. Romanov
    • 1
    • 2
    • 3
  1. 1.Tolyatti State UniversityTolyattiRussia
  2. 2.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.National Research University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations