Spectra of cosmic-ray protons and nuclei from 1010 to 1020 eV within the galactic origin scenario of cosmic rays

  • A. A. LagutinEmail author
  • A. G. Tyumentsev
  • N. V. Volkov
  • R. I. Raikin
Materials of the XXXIII National Conference on Cosmic Rays


Results from calculating the cosmic ray energy spectrum within the Galactic origin scenario are presented. Key elements of the approach are the assumed existence of Galactic sources that accelerate particles up to ∼1011 GeV and a highly inhomogeneous (fractal type) distribution of matter and magnetic fields in the Galaxy that leads to large free paths for particles (Levy flights), along with an overwhelming contribution to the cosmic ray fluxes observed in the energy range of 109–1011 GeV from particles reaching the Solar System without scattering. It is shown that the proposed scenario allows us to describe the main features of the observed cosmic ray spectrum from 1010 to 1020 eV. The behavior of the cosmic ray mass composition in the ultra-high energy region is discussed.


Anomalous Diffusion Diffusion Contribution Galactic Source Levy Flight Galactic Origin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greisen, K., Phys. Rev. Lett., 1966, vol. 16, p. 748.CrossRefADSGoogle Scholar
  2. 2.
    Zatsepin, G.T. and Kuz’min, V.A., Pis’ma Zh. Eksp. Teor. Fiz., 1966, vol. 4, p. 144.Google Scholar
  3. 3.
    Abbasi, R.U., et al., Phys. Rev. Lett., 2008, vol. 100, no. 101101.Google Scholar
  4. 4.
    Abraham, J., et al., Phys. Rev. Lett., 2008, vol. 101, no. 061101.Google Scholar
  5. 5.
    Aloisio, R., Berezinsky, V., and Gazizov, A., Astropart. Phys., 2011, vol. 34, p. 620.CrossRefADSGoogle Scholar
  6. 6.
    Calvez, A., Kusenko, A., and Nagataki, S., Phys. Rev. Lett., 2010, vol. 105, no. 091101.Google Scholar
  7. 7.
    Fang, K., Kotera, K., and Olinto, A.V., JCAP, 2013, vol. 03, p. 010.CrossRefADSGoogle Scholar
  8. 8.
    Lagutin, A.A. and Uchaikin, V.V., Nucl. Instrum. Methods Phys. Res., 2003, vol. 201, p. 212.CrossRefADSGoogle Scholar
  9. 9.
    Lagutin, A.A. and Tyumentsev, A.G., Izv. Altai. Gos. Univ., 2004, no. 5(35), p. 4.Google Scholar
  10. 10.
    Lagutin, A.A. and Tyumentsev, A.G., Izv. Altai. Gos. Univ., 2004, no. 5(35), p. 22.Google Scholar
  11. 11.
    Lagutin, A.A., Tyumentsev, A.G., and Volkov, N.V., Izv. Akad. Nauk, Ser. Fiz., 2009, vol. 73, no. 5, p. 561.Google Scholar
  12. 12.
    Samko, S.G., Kilbas, A.A., and Marichev, O.I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya (Fractional Integrals and Derivatives and Their Application), Minsk: Nauka i tekhnika, 1987.zbMATHGoogle Scholar
  13. 13.
    Uchaikin, V.V. and Zolotarev, V.M., Chance and Stability, Utrecht: VSP, 1999.CrossRefzbMATHGoogle Scholar
  14. 14.
    Kampert, K. and Tinyakov, P., C.R. Phys., 2014, vol. 15, p. 318.CrossRefADSGoogle Scholar
  15. 15.
    Apel, W.D., Arteaga-Velazquez, J.C., Bekk, K., et al., Astropart. Phys., 2013, vol. 47, p. 54.CrossRefADSGoogle Scholar
  16. 16.
    Sveshnikova, L.G., Korosteleva, E.E., Kuzmichev, L.A., et al., J. Phys. Conf. Ser., 2013, vol. 409, no. 012062.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. A. Lagutin
    • 1
    Email author
  • A. G. Tyumentsev
    • 1
  • N. V. Volkov
    • 1
  • R. I. Raikin
    • 1
  1. 1.Radiophysics and Theoretical Physics DepartmentAltai State UniversityBarnaulRussia

Personalised recommendations