A lidar equation with allowance for the finite width of the lasing line

Proceedings of the International Conference “Luminescence and Laser Physics, 2014”

Abstract

The effect the finite width of the lasing line has on the results of lidar experiments is studied. When the lasing line half-width is increased, the elastic backscattering power is reduced by up to 1.5% at sounding distances of up to 5 km, and the relative error in measurements of the elastic scattering power is approximately doubled at the same sounding distances. It is shown for the first time that allowing for the finite width of the lasing line in the sounding of iodine molecules in the atmosphere with differential absorption and scattering lidar clearly reduces the optical density as the sounding distance and concentration of iodine molecules grow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Privalov, V.E. and Shemanin, V.G., Parametry lidarov dlya distantsionnogo zondirovaniya gazovykh molekul i aerozolya v atmosphere (Lidars Parameters for Remote Sensing of Gas Molecules and Aerosol in the Atmosphere), St. Petersburg: Baltic State Technical Univ. “Voenmeh” D.F. Ustinov, 2001.Google Scholar
  2. 2.
    Privalov, V.E., Fotiadi, A.E., and Shemanin, V.G., Lazery i ekologicheskii monitoring atmosfery (Lasers and Ecological Monitoring of the Atmosphere), St. Petersburg: Lan’, 2013.Google Scholar
  3. 3.
    Privalov, V.E., Fotiadi, A.E., and Shemanin, V.G., Lazernye sistemy ekologicheskogo monitoringa (Laser Systems for Ecological Monitoring), St. Petersburg: St. Petersburg State Politechn. Univ., 2013.Google Scholar
  4. 4.
    Privalov, V.E. and Shemanin, V.G., Fotonika, 2013, no. 2(38), p. 72.Google Scholar
  5. 5.
    Krekov, G.M., Krekova, M.M., Sukhanov, A.Ya., and Lysenko, A.A., Pis’ma Zh. Tekh. Fiz., 2009, vol. 35, issue 15, p. 8.Google Scholar
  6. 6.
    Dolgikh, G.I. and Privalov, V.E., Lazery. Lazernye sistemy (Lasers. Laser Systems), Vladivostok: Dal’nauka, 2009.Google Scholar
  7. 7.
    Donchenko, V.A., Kabanov, M.V., Kaul’, B.V., and Samokhvalov, I.V., Atmosfernaya elektrooptika (Atmospheric Electrical Optics), Tomsk: Izd. Nauch.-Tekhn. Lit., 2010.Google Scholar
  8. 8.
    Measures, R.M., Laser Remote Sensing: Fundamentals and Applications, Malabar, FL: Krieger, 1992.Google Scholar
  9. 9.
    Zuev, V.E., Kaul’, B.V., Samokhvalov, I.V., et al., Lazernoe zondirovanie industrial’nykh aerozolei (Laser Probing for Industrial Aerosols), Novosibirsk: Nauka, 1986.Google Scholar
  10. 10.
    Hinkley, E.D., Laser Monitoring of the Atmosphere, London: Springer, 1976.CrossRefGoogle Scholar
  11. 11.
    Matematicheskaya entsiklopediya (Mathematical Encyclopedia), Vinogradov, I.M., Ed., Moscow: Sov. Entsiklopediya, 1979, vol. 2.MATHGoogle Scholar
  12. 12.
    Voronina, E.I., Privalov, V.E., and Shemanin, V.G., Pis’ma Zh. Tekh. Fiz., 2004, vol. 30, issue 5, p. 14.Google Scholar
  13. 13.
    Privalov, V.E., Shemanin, V.G., and Voronina, E.I., Inf. Kosmos, 2009, no. 4, p. 87.Google Scholar
  14. 14.
    Privalov, V.E. and Shemanin, V.G., Opt. Zh., 1999, vol. 66, no. 2, p. 40.Google Scholar
  15. 15.
    Privalov, V.E. and Shemanin, V.G., Proc. SPIE-Int. Soc. Opt. Eng., 2002, vol. 4900, p. 78.ADSGoogle Scholar
  16. 16.
    Mironov, A.V., Privalov, V.E., and Savel’ev, S.K., Opt. Spektrosk., 1997, vol. 82, no. 3, p. 348.Google Scholar
  17. 17.
    Privalov, V.E. and Shemanin, V.G., Prib. Sist. Upr., 1998, no. 12, p. 60.Google Scholar
  18. 18.
    Privalov, V.E. and Shemanin, V.G., Proc. SPIE-Int. Soc. Opt. Eng., 2000, vol. 4316, p. 36.ADSGoogle Scholar
  19. 19.
    Zuev, V.V., Kataev, M.Yu., Makogon, M.M., and Mitsel’, A.A., Opt. Atmos. Okeana, 1995, vol. 8, no. 8, p. 1136.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.St. Petersburg State Polytechnic UniversitySt. PetersburgRussia
  2. 2.Novorossiisk Polytechnic InstituteNovorossiiskRussia

Personalised recommendations