What distinguishes a living structure from a lifeless structure?

  • A. A. Vazina
Proceedings of the 20th National Conference on the Use of Synchrotron Radiation “SR-2014” and the National Youth Conference “Using Synchrotron Radiation”


The molecular and nanostructural dynamics of the three fibrillar systems of a muscle during its contraction is studied by means of high-time resolution X-ray diffraction using synchrotron radiation. The results from X-ray diffraction research are analyzed within the modern mathematical concept of the local structural order of nanoobjects. Questions of the structure and function of biological nanosystems are associated with the geometry of the physical space in which these objects are formed and exist. The organization of biological structures differs from the crystal-type ordering in three-dimensional Euclidean space by transition from invariance relative to the infinite translational lattice of lifeless structures to the local nanostructural ordering of live systems which is defined by invariance relative to the constructions of algebraic geometry.


Thin Filament Sarcomere Length Phase Contrast Image Thick Filament Titin Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Rosenbaum, G., Holmes, K.C., and Witz, J., Nature, 1971, vol. 230, pp. 434–437.ADSCrossRefGoogle Scholar
  2. 2.
    Mokul’skaya, T.D., Mokul’skii, N.A., Nikitin, A.A., et al., Dokl. Akad. Nauk SSSR, 1974, vol. 218, p. 824.Google Scholar
  3. 3.
    Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Biofizika, 1975, vol. 20, no. 5, pp. 801–806.Google Scholar
  4. 4.
    Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Apparat. Metody Rentgen. Anal., 1977, no. 19, pp. 73–81.Google Scholar
  5. 5.
    Gimanov, V.P., Goganov, D.A., Kos’yankov, A.P., et al., Biofizika, 1978, vol. 23, no. 2, pp. 393–398.Google Scholar
  6. 6.
    Lemazhikhin, B.K. and Lebedev, L.A., Prib. Tekhn. Eksperim., 1960, no. 1, p. 136.Google Scholar
  7. 7.
    Vazina, A.A., Lemazhikhin, B.K., and Frank, G.M., Dokl. Akad. Nauk SSSR, 1964, vol. 159, no. 4, pp. 921–924.Google Scholar
  8. 8.
    Vazina. A.A., Lemazhikhin, B.K., and Frank, G.M., Biofizika, 1964, vol. 9, no. 2, p. 237.Google Scholar
  9. 9.
    Frank, G. and Lemazhikhin, B., J. Mol. Biol., 1965, vol. 14, pp. 373–380.CrossRefGoogle Scholar
  10. 10.
    Yurchenko, S.N., Vazina, A.A., Lemazhikhin, B.K., and Krasan, Yu.P., Biokhimiya, 1966, vol. 31, pp. 191–193.Google Scholar
  11. 11.
    Vazina, A.A., Zeleznaja, L.A., Lemazikhin, B.K., and Frank, G.M., Acta Crystallogr. A, 1966, vol. 21, pp. 166–167.Google Scholar
  12. 12.
    Vazina, A.A., Nucl. Instrum. Methods A, 1987, vol. 261, pp. 200–208.ADSCrossRefGoogle Scholar
  13. 13.
    Huxley, H.E. and Brown, W., J. Mol. Biol., 1967, vol. 30, p. 383.CrossRefGoogle Scholar
  14. 14.
    Vazina, A.A., Zh. Vsesoyuzn. Khim. Obsch., 1983, vol. 28, no. 2, pp. 84–89.Google Scholar
  15. 15.
    Vazina, A.A., Vestn. Akad. Nauk SSSR, 1978, no. 8, pp. 14–23.Google Scholar
  16. 16.
    Vazina, A.A., Vol’kenshtein, M.V., Gadzhiev, A.M., et al., Dokl. Akad. Nauk SSSR, 1984, vol. 284, no. 4, pp. 941–945.Google Scholar
  17. 17.
    Huxley, H.E., et al., Proc. Nat. Acad. Sci. USA, 1981, vol. 78, p. 2297.ADSCrossRefGoogle Scholar
  18. 18.
    Soteriou, A., Trinick, J., Vazina, A., et al., Proc. Int. Symp. “Biological Motility”, Pushchino, 1994, pp. 51–54.Google Scholar
  19. 19.
    Vazina, A., Gorbunova, N., Lanina, N., et al., Nucl. Instrum. Methods A, 2005, vol. 543, pp. 148–152.ADSCrossRefGoogle Scholar
  20. 20.
    Vazina, A., Lanina, N., Bras, W., et al., J. Muscle Res. Cell Motility, 2006, vol. 27, nos. 5–7, p. 486.Google Scholar
  21. 21.
    Vazina, A., Lanina, N., Alexeev, D., et al., J. Struct. Biol., 2006, vol. 155, pp. 251–262.CrossRefGoogle Scholar
  22. 22.
    Gerasimov, V.S., Korneev, V.N., Kulipanov, G.N., et al., Nucl. Instrum. Methods A, 1998, vol. 405, pp. 525–531.ADSCrossRefGoogle Scholar
  23. 23.
    Ancharov, A.I., Vazina, A.A., Kondrat’ev, V.I., et al., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 2005, no. 9, pp. 44–48.Google Scholar
  24. 24.
    Manushkin, A., Maevsky, E., Shelestov, V., et al., Proc. 4th Int. Conf. “Science and Business”: NANOBIO and Related New and Perspective Biotechnologies, Pushchino, 2007, pp. 107–111.Google Scholar
  25. 25.
    Shil’shtein, S.Sh., Somenkov, V.A., Manushkin, A.A., et al., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 1997, no 12, pp. 45–56.Google Scholar
  26. 26.
    Manushkin, A.A., Khodeev, A.I., Shil’shtein, S.Sh., et al., Vestn. Rentgenol. Radiol. Med., 1998, no. 2, pp. 32–37.Google Scholar
  27. 27.
    Kohn, V., Rau, C., Sergienko, P.M., et al., Nucl. Instrum. Methods A, 2005, vol. 543, pp. 306–311.ADSCrossRefGoogle Scholar
  28. 28.
    Aul’chenko, V.M., Vazina, A.A., Galimov, P.V., et al., Nucl. Instrum. Methods A, 2005, vol. 543, pp. 158–160.ADSCrossRefGoogle Scholar
  29. 29.
    Snigirev, A., Snigireva, I., Kohn, V., et al., Rev. Sci. Instrum., 1995, vol. 66, no. 12, pp. 5486–5492.ADSCrossRefGoogle Scholar
  30. 30.
    Orengo, C.A., Jones, D.T., and Thornton, J.M., Nature, 1994, vol. 372, pp. 631–634.ADSCrossRefGoogle Scholar
  31. 31.
    Samoilovich, M.I. and Talis, A.L., Materialy XVIII Mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Vysokie tekhnologii v promyshlennosti Rossii” (Proc. 18th Int. Sci.-Tech. Conf. “High Technologies in the Russian Industry”), Moscow, 2012, pp. 394–424.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations