X-ray diffraction study of the nanostructural dynamics of fibrillar systems of hair tissue

  • A. A. Vazina
  • A. A. Vasilieva
  • N. F. Lanina
  • A. V. Zabelin
  • V. N. Korneev
  • G. N. Kulipanov
Proceedings of the 20th National Conference on the Use of Synchrotron Radiation “SR-2014” and the National Youth Conference “Using Synchrotron Radiation”


A comprehensive review of experimental diffraction and spectral studies of hair tissue is presented. The limits of these analyses’ applicability in studying normal and transformed tissues are outlined. The effect of different endogenous and exogenous factors on the molecular and nanostructural ordering of human hair are studied by means of X-ray fluorescence and diffraction using synchrotron radiation. The diffraction pattern of hair is attributed to two fibrillar systems of tissue: the intermediate keratin filaments of its cytoskeleton and the proteoglycan fibrils of its extracellular matrix. The effect of personal hygiene products and medicines widely used for hair care on the structural transformation and elemental composition of hair tissue is investigated. Proteoglycans are considered as universal components of a matrix that ensure the structural homeostasis of biological tissue subjected to endogenous and exogenous effects. Hair tissue is a promising biological material for solving applied problems when used as a diagnostic material for the wide-scale monitoring of environmental and public health risks.


Human Hair Structural Biology Identity Period Mucus Sample Ring Reflection 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Astbury, W.T. and Street, A., Philos. Trans. Roy. Soc. London A, 1932, vol. 230, pp. 75–101.ADSCrossRefGoogle Scholar
  2. 2.
    James, V., Kearsley, J., Irving, T., et al., Nature, 1999, vol. 398, pp. 33–34.ADSCrossRefGoogle Scholar
  3. 3.
    Hart, M., Synchrotron Rad. News, 1999, vol. 12, no. 5, p. 31.CrossRefGoogle Scholar
  4. 4.
    Amenitsch, H., Rappolt, M., Laggner, P., et al., Synchrotron Rad. News, 1999, vol. 12, no. 5, pp. 32–34.CrossRefGoogle Scholar
  5. 5.
    Briki, F., Busson, B., Salicru, B., et al., Nature, 1999, vol. 400, p. 226.ADSCrossRefGoogle Scholar
  6. 6.
    Stephenson, J., JAMA, 1999, vol. 281, no. 17, pp. 1–3.CrossRefGoogle Scholar
  7. 7.
    Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Biofizika, 1975, vol. 20, no. 5, pp. 801–806.Google Scholar
  8. 8.
    Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Apparat. Metody Rentgen. Anal., 1977, no. 19, pp. 73–81.Google Scholar
  9. 9.
    Vazina, A.A., Gerasimov, V.S., Zheleznaya, L.A., et al., Preprint of Biophysics Institute USSR Acad. Sci., Pushchino, 1978.Google Scholar
  10. 10.
    Korneev, V.N., Shlektarev, V.A., Aul’chenko, V.M., et al., Bull. Russ. Acad. Sci.: Phys., 2008, vol. 72, no. 2, pp. 197–200.Google Scholar
  11. 11.
    Vazina, A.A., Bras, W., Dolbnya, I.P., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 543, pp. 153–157.ADSCrossRefGoogle Scholar
  12. 12.
    Aksirov, A.M., Gerasimov, V.S., Kondratyev, V.I., et al., Nucl. Instrum. Methods. Phys. Res. A, 2001, vol. 470, pp. 380–382.ADSCrossRefGoogle Scholar
  13. 13.
    Korneev, V.N., Shlektarev, V.A., Zabelin, A.V., et al., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 2012, no. 10, pp. 71–87.Google Scholar
  14. 14.
    James, V.J., Cancer Detect. Prevent., 2006, vol. 30, pp. 233–238.CrossRefGoogle Scholar
  15. 15.
    Vazina, A.A., Gerasimov, V.S., Gorbunova, N.P., et al., Nucl. Instrum. Methods Phys. Res. A, 1998, vol. 405, pp. 454–458.ADSCrossRefGoogle Scholar
  16. 16.
    Drakopoulos, M., Sergienko, P.M., Snigireva, I., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 543, pp. 161–165.ADSCrossRefGoogle Scholar
  17. 17.
    Trounova, V.A., Vazina, A.A., Lanina, N.F., et al., X-Ray Spectr., 2002, vol. 31, pp. 314–318.CrossRefGoogle Scholar
  18. 18.
    Vazina, A.A., Lanina, N.F., Korneev, V.N., et al., J. Glass Phys. Chem., 2007, vol. 33, no. 3, pp. 294–301.CrossRefGoogle Scholar
  19. 19.
    Vazina, A.A., Denisova, E.A., Zheleznaya, L.A., and Lazarev, P.I., Dokl. Akad. Nauk SSSR, 1985, vol. 281, no. 4, pp. 975–978.Google Scholar
  20. 20.
    Denisova, E.A., Lazarev, P.I., Vazina, A.A., and Zhelesnaya, L.A., Stud. Biophys., 1985, vol. 108, no. 2, pp. 117–121.Google Scholar
  21. 21.
    Zheleznaya, L.A., Denisova, E.A., Lazarev, P.I., and Vazina, A.A., J. Nanobiol., 1992, vol. 1, pp. 107–115.Google Scholar
  22. 22.
    Vazina, A.A., Lanina, N.F., Vasilieva, A.A., et al., Nucl. Instrum. Methods Phys. Res. A, 2009, vol. 603, pp. 90–94.ADSCrossRefGoogle Scholar
  23. 23.
    Vazina, A.A., Budantsev, A.Yu., Bras, W., et al., Nucl. Instrum. Methods Phys. Res. A, 2005, vol. 543, pp. 297–301.ADSCrossRefGoogle Scholar
  24. 24.
    Vazina, A.A., Vasilieva, A.A., Lanina, N.F., et al., Bull. Russ. Acad. Sci. Phys., 2013, vol. 77, no. 2, p. 146.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. A. Vazina
    • 1
  • A. A. Vasilieva
    • 1
  • N. F. Lanina
    • 1
  • A. V. Zabelin
    • 2
  • V. N. Korneev
    • 3
  • G. N. Kulipanov
    • 2
  1. 1.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  2. 2.National Research Center Kurchatov InstituteMoscowRussia
  3. 3.Institute of Cell BiophysicsRussian Academy of SciencesPushchinoRussia

Personalised recommendations