X-ray absorption spectroscopy determination of the products of manganese borohydride decomposition upon heating

  • A. A. GudaEmail author
  • I. A. Pankin
  • A. L. Bugaev
  • K. A. Lomachenko
  • S. A. Guda
  • V. P. Dmitriev
  • A. V. Soldatov
Proceedings of the 20th National Conference on the Use of Synchrotron Radiation “SR-2014” and the National Youth Conference “Using Synchrotron Radiation”


Manganese borohydride Mn(BH4)2 powder is heated in a hydrogen atmosphere in vacuum. The long-range order in the structure is monitored in situ by means of X-ray absorption spectroscopy and X-ray diffraction; short-range order, via Mg K-edge X-ray absorption near-edge structure spectroscopy. Above 120°C, the X-ray diffraction pattern disappears and an irreversible phase transition occurs, accompanied by sample amorphization and profuse hydrogen desorption. In the hydrogen atmosphere, the phase transition occurs at a temperature of ∼110°C. The standard scheme of borohydride decomposition suggests hydrogen desorption and the formation of metallic manganese and boron. However, a theoretical analysis of X-ray absorption spectra shows that the most likely products of Mn(BH4)2 decomposition are manganese borides.


Borohydride Hydrogen Desorption Diborane Metallic Manganese Irreversible Phase Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Orimo, S.I., Nakamori, Y., Eliseo, J.R., Zuttel, A., and Jensen, C.M., Chem. Rev., 2007, vol. 107, p. 4111.CrossRefGoogle Scholar
  2. 2.
    Zuttel, A., Rentsch, S., Fischer, P., Wenger, P., Sudan, P., Mauron, P., and Emmenegger, C., J. Alloys Compounds, 2003, vol. 356, p. 515.CrossRefGoogle Scholar
  3. 3.
    Zuttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, P., and Emmenegger, C., J. Power Sources, 2003, vol. 118, p. 1.ADSCrossRefGoogle Scholar
  4. 4.
    Kou, H., Sang, G., Huang, Z., Luo, W., Chen, L., Xiao, X., Hu, C., and Zhou, Y., Int. J. Hydrogen Energy, 2014, vol. 39, p. 7050.CrossRefGoogle Scholar
  5. 5.
    Varin, R.A., Zbroniec, L., Polanski, M., Filinchuk, Y., and Cerny, R., Int. J. Hydrogen Energy, 2012, vol. 37, p. 16056.CrossRefGoogle Scholar
  6. 6.
    Liu, R.X., Reed, D., and Book, D., J. Alloys Compounds, 2012, vol. 32, p. 515.Google Scholar
  7. 7.
    Černý, R., Penin, N., Hagemann, H., and Filinchuk, Y., J. Phys. Chem. C, 2009, vol. 113, p. 9003.CrossRefGoogle Scholar
  8. 8.
    Filinchuk, Y., Richter, B., Jensen, T.R., Dmitriev, V., Chernyshov, D., and Hagemann, H., Angew. Chem. Int. Ed., 2011, vol. 50, p. 11162.CrossRefGoogle Scholar
  9. 9.
    Cerny, N.P.R., Hagemann, H., and Filinchuk, Y., J. Phys. Chem. C, 2009, vol. 113, p. 9003.CrossRefGoogle Scholar
  10. 10.
    Liu, R., Reed, D., and Book, D., J. Alloys Compounds, 2012, vol. 32, p. 515.Google Scholar
  11. 11.
    Hammersley, A.P., Svensson, S.O., Hanfland, M., Fitch, A.N., and Hausermann, D., High Pressure Res., 1996, vol. 14, p. 235.ADSCrossRefGoogle Scholar
  12. 12.
    Davis, T.A., ACM Trans., Math. Softwear, 2004, vol. 30, p. 196.CrossRefzbMATHGoogle Scholar
  13. 13.
    Davis, T.A. and Duff, I.S., ACM Trans. Math. Softwear, 1999, vol. 25, p. 1.CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y., and Pralet, S., Parallel Comput., 2006, vol. 32, p. 136.CrossRefMathSciNetGoogle Scholar
  15. 15.
    Amestoy, P., Duff, I., L’Excellent, J., and Koster, J., SIAM J. Matrix Anal. Appl., 2001, vol. 23, p. 15.CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Shaltout, A.A., Gomma, M.M., and Ali-Bik, M.W., X-Ray Spectrometry, 2012, vol. 41, p. 355.CrossRefGoogle Scholar
  17. 17.
    Soloveichik, G.L., Mater. Matters, 2007, vol. 2.2, p. 11.Google Scholar
  18. 18.
    Choudhury, P., Bhethanabotla, V.R., and Stefanakos, E., J. Phys. Chem. C, 2009, vol. 113, p. 13416.CrossRefGoogle Scholar
  19. 19.
    Smolentsev, G., Soldatov, A.V., and Feiters, M.C., Phys. Rev. B, 2007, vol. 75, p. 144106.ADSCrossRefGoogle Scholar
  20. 20.
    Bianconi, A, Dell Ariccia, M., Gargano, A., and Natoli, C.R., in Bond Length Determination Using XANES. EXAFS and Near Edge Structure, Bianconi, A., Incoccia, A., and Stipcich, S., Eds., Berlin: Springer, 1987, pp. 57–61.Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. A. Guda
    • 1
    Email author
  • I. A. Pankin
    • 1
  • A. L. Bugaev
    • 1
  • K. A. Lomachenko
    • 1
  • S. A. Guda
    • 1
  • V. P. Dmitriev
    • 1
    • 2
  • A. V. Soldatov
    • 1
  1. 1.Southern Federal UniversityRostov-on-DonRussia
  2. 2.SNBL at ESRFPolygone Scientifique Louis NéelGrenobleFrance

Personalised recommendations