Advertisement

Bulletin of the Russian Academy of Sciences: Physics

, Volume 79, Issue 9, pp 1180–1185 | Cite as

Pd hydride and carbide studied by means of Pd K-edge X-ray absorption near-edge structure analysis

  • A. L. Bugaev
  • A. A. Guda
  • K. A. Lomachenko
  • L. A. Bugaev
  • A. V. Soldatov
Proceedings of XX Conference “SR-2014”

Abstract

A Pd K-edge X-ray absorption near edge structure (XANES) analysis for palladium hydride and carbide nanoparticles is presented. It is shown that the presence of H and C atoms changes the Pd unoccupied p-electronic states, affecting the near-edge fine structure. Quantitative XANES analysis is performed using a multidimensional interpolation approach. Theoretical models of PdH and PdC clusters are developed using Monte Carlo methods. The proposed technique allow us to determine hydrogen concentrations in palladium nanoparticles and correctly reproduce all experimental features of XANES spectra for palladium hydride and carbide nanoparticles.

Keywords

Palladium Hydride Palladium Nanoparticles Hydride Phase Palladium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tungler, A., Tarnai, T., Hegedus, L., Fodor, K., and Máthé, T., Platinum Met. Rev., 1998, vol. 42, no. 3, p. 108.Google Scholar
  2. 2.
    Yu, L.J., Jiang, D.H., Xu, J., Ma, L., and Li, X.N., China Pet. Process. Petrochem. Technol., 2012, vol. 14, no. 3, p. 83.Google Scholar
  3. 3.
    Lampert, J.K., Kazi, M.S., and Farrauto, R.J., Appl. Catal., B, 1997, vol. 14, nos. 3–4, p. 211.CrossRefGoogle Scholar
  4. 4.
    Gelin, P. and Primet, M., Appl. Catal., B, 2002, vol. 39, no. 1, p. 1.CrossRefGoogle Scholar
  5. 5.
    Liotta, L.F., Appl. Catal., B, 2010, vol. 100, nos. 3–4, p. 403.CrossRefGoogle Scholar
  6. 6.
    Pernicone, N., Cerboni, M., Prelazzi, G., Pinna, F., and Fagherazzi, G., Catal. Today, 1998, vol. 44, nos. 1–4, p. 129.CrossRefGoogle Scholar
  7. 7.
    Pellegrini, R., Agostini, G., Groppo, E., Piovano, A., Leofanti, G., and Lamberti, C., J. Catal., 2011, vol. 280, no. 2, p. 150.CrossRefGoogle Scholar
  8. 8.
    Blaser, H.U., Indolese, A., Schnyder, A., Steiner, H., and Studer, M., J. Mol. Catal. A: Chem., 2001, vol. 173, nos. 1–2, p. 3.CrossRefGoogle Scholar
  9. 9.
    Garrett, C.E. and Prasad, K., Adv. Synth. Catal., 2004, vol. 346, no. 8, p. 889.CrossRefGoogle Scholar
  10. 10.
    Torborg, C. and Beller, M., Adv. Synth. Catal., 2009, vol. 351, no. 18, p. 3027.CrossRefGoogle Scholar
  11. 11.
    Tew, M.W., Miller, J.T., and van Bokhoven, J.A., J. Phys. Chem. C, 2009, vol. 113, no. 34, p. 15140.CrossRefGoogle Scholar
  12. 12.
    Langhammer, C., Larsson, E.M., Kasemo, B., and Zoric, I., Nano Lett., 2010, vol. 10, no. 9, p. 3529.CrossRefADSGoogle Scholar
  13. 13.
    Ingham, B., Toney, M.F., Hendy, S.C., Cox, T., Fong, D.D., Eastman, J.A., Fuoss, P.H., Stevens, K.J., Lassesson, A., and Brown, S., Phys. Rev. B, 2008, vol. 78, no. 24, p. 245408.CrossRefADSGoogle Scholar
  14. 14.
    Yamauchi, M., Ikeda, R., Kitagawa, H., and Takata, M., J. Phys. Chem. C, 2008, vol. 112, no. 9, p. 3294.CrossRefGoogle Scholar
  15. 15.
    Agostini, G., Lamberti, C., Pellegrini, R., Leofanti, G., Giannici, F., Longo, A., and Groppo, E., ACS Catal., 2014, vol. 4, no. 1, p. 187.CrossRefGoogle Scholar
  16. 16.
    Bérubé, V., Radtke, G., Dresselhaus, M., and Chen, G., Int. J. Energy Res., 2007, vol. 31, nos. 6–7, p. 637.CrossRefGoogle Scholar
  17. 17.
    Jobic, H. and Renouprez, A., J. Less Common Met., 1987, vol. 129, p. 311.CrossRefGoogle Scholar
  18. 18.
    Narehood, D., Kishore, S., Goto, H., Adair, J., Nelson, J., Gutierrez, H., and Eklund, P., Int. J. Hydrogen Energy, 2009, vol. 34, no. 2, p. 952.CrossRefGoogle Scholar
  19. 19.
    Langhammer, C., Zhdanov, V.P., Zoric, I., and Kasemo, B., Chem. Phys. Lett., 2010, vol. 488, no. 1, p. 62.CrossRefADSGoogle Scholar
  20. 20.
    Langhammer, C., Zhdanov, V.P., Zoric, I., and Kasemo, B., Phys. Rev. Lett., 2010, vol. 104, no. 13, p. 135502.CrossRefADSGoogle Scholar
  21. 21.
    Zhdanov, V.P. and Kasemo, B., Chem. Phys. Lett., 2008, vol. 460, no. 1, p. 158.CrossRefADSGoogle Scholar
  22. 22.
    Johnson, A., Daley, S., Utz, A., and Ceyer, S., Science, 1992, vol. 257, no. 5067, p. 223.CrossRefADSGoogle Scholar
  23. 23.
    Haug, K., Buergi, T., Trautman, T., and Ceyer, S., J. Am. Chem. Soc., 1998, vol. 120, no. 34, p. 8885.CrossRefGoogle Scholar
  24. 24.
    Teschner, D., Borsodi, J., Wootsch, A., Revay, Z., Havecker, M., Knop-Gericke, A., Jackson, S.D., and Schlogl, R., Science, 2008, vol. 320, no. 5872, p. 86.CrossRefADSGoogle Scholar
  25. 25.
    Chase, Z.A., Fulton, J.L., Camaioni, D.M., Mei, D., Balasubramanian, M., Pham, V.-T., Zhao, C., Weber, R.S., Wang, Y., and Lercher, J.A., J. Phys. Chem. C, 2013, vol. 117, no. 34, p. 17603.CrossRefGoogle Scholar
  26. 26.
    Morkel, M., Rupprechter, G., and Freund, H.-J., Surf. Sci., 2005, vol. 588, no. 1, p. L209.CrossRefADSGoogle Scholar
  27. 27.
    Tew, M.W., Janousch, M., Huthwelker, T., and van Bokhoven, J.A., J. Catal., 2011, vol. 283, no. 1, p. 45.CrossRefGoogle Scholar
  28. 28.
    Tew, M.W., Nachtegaal, M., Janousch, M., Huthwelker, T., and van Bokhoven, J.A., Phys. Chem. Chem. Phys., 2012, vol. 14, no. 16, p. 5761.CrossRefGoogle Scholar
  29. 29.
    Bugaev, A.L., Guda, A.A., Lomachenko, K.A., Srabionyan, V.V., Bugaev, L.A., Soldatov, A.V., Lamberti, C., Dmitriev, V.P., and van Bokhoven, J.A., J. Phys. Chem. C, 2014, vol. 118, no. 19, p. 10416.CrossRefGoogle Scholar
  30. 30.
    Ravel, B. and Newville, M., J. Synchrotron Radiat., 2005, vol. 12, no. 4, p. 537.CrossRefGoogle Scholar
  31. 31.
    Rehr, J.J. and Albers, R.C., Rev. Mod. Phys., 2000, vol. 72, no. 3, p. 621.CrossRefADSGoogle Scholar
  32. 32.
    Beni, G. and Platzman, P., Phys. Rev. B, 1976, vol. 14, no. 4, p. 1514.CrossRefADSGoogle Scholar
  33. 33.
    Leontyev, I., Guterman, V., Pakhomova, E., Timoshenko, P., Guterman, A., Zakharchenko, I., Petin, G., and Dkhil, B., J. Alloys Compd., 2010, vol. 500, no. 2, p. 241.CrossRefGoogle Scholar
  34. 34.
    X-Ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS and XANES, Koningsberger, D.C. and Prins, R., Eds., John Wiley and Sons, 1987.Google Scholar
  35. 35.
    Bordiga, S., Groppo, E., Agostini, G., van bokhoven, J.A., and Lamberti, C., Chem. Rev., 2013, vol. 113, no. 3, p. 1736.CrossRefGoogle Scholar
  36. 36.
    Pettifer, R.F., Mathon, O., Pascarelli, S., Cooke, M.D., and Gibbs, M.R., Nature, 2005, vol. 435, no. 7038, p. 78.CrossRefADSGoogle Scholar
  37. 37.
    Romanato, F., de Salvador, D., Berti, M., Drigo, A., Natali, M., Tormen, M., Rossetto, G., Pascarelli, S., Boscherini, F., Lamberti, C., and Mobilio, S., Phys. Rev. B, 1998, vol. 57, no. 23, p. 14619.CrossRefADSGoogle Scholar
  38. 38.
    Srabionyan, V.V., Bugaev, A.L., Pryadchenko, V.V., Avakyan, L.A., van Bokhoven, J.A., and Bugaev, L.A., J. Phys. Chem. Solids, 2014, vol. 75, no. 4, p. 470.CrossRefGoogle Scholar
  39. 39.
    Hedin, L. and Lundqvist, B.I., J. Phys. C: Solid State Phys., 1971, vol. 4, no. 14, p. 2064.CrossRefADSGoogle Scholar
  40. 40.
    Rehr, J.J. and Ankudinov, A.L., Coord. Chem. Rev., 2005, vol. 249, nos. 1–2, p. 131.CrossRefGoogle Scholar
  41. 41.
    Smolentsev, G. and Soldatov, A., J. Synchrotron Radiat., 2005, vol. 13, no. 1, p. 19.CrossRefGoogle Scholar
  42. 42.
    Smolentsev, G. and Soldatov, A.V., Comput. Mater. Sci., 2007, vol. 39, no. 3, p. 569.CrossRefGoogle Scholar
  43. 43.
    Bugaev, A.L., Srabionyan, V.V., Soldatov, A.V., Bugaev, L.A., and van Bokhoven, J.A., J. Phys.: Conf. Ser., 2013, vol. 430, p. 012028.ADSGoogle Scholar
  44. 44.
    Kishore, S., Nelson, J., Adair, J., and Eklund, P., J. Alloys Compd., 2005, vol. 389, no. 1, p. 234.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • A. L. Bugaev
    • 1
  • A. A. Guda
    • 1
  • K. A. Lomachenko
    • 1
  • L. A. Bugaev
    • 1
  • A. V. Soldatov
    • 1
  1. 1.Faculty of PhysicsSouthern Federal UniversityRostov-on-DonRussia

Personalised recommendations