Controlling the growth dynamics of carbon nanotips on substrates irradiated by a focused electron beam

Proceedings of the XVIII Russian Symposium on Scanning Electron Microscopy and Analytical Methods of Investigation Used in Solid-State Physics SEM-2013
  • 29 Downloads

Abstract

The dynamics of nanopillar growth on a variety of substrates as a result of the deposition of hydrocarbon molecules by a sharply focused electron beam is studied. The growth rate is found to depend strongly on the substrate’s material, thickness, and surface condition. The results are explained through the dissociation of adsorbed molecules by scattered and secondary electrons far from the point of beam incidence, thereby reducing the flow of diffusion to a nanotip’s peak.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Utke, I., Moshkalev, S., and Russell, P., Nanofabrication Using Focused Ion and Electron Beam. Principles and Applications, Oxford, 2012.Google Scholar
  2. 2.
    Bret, T., Mauron, S., Utke, I., and Hoffmann, P., Microelectron. Eng., 2005, vol. 78/79, p. 300.CrossRefGoogle Scholar
  3. 3.
    Utke, I., Hoffmann, P., and Melngailis, J., J. Vac. Sci. Technol. B, 2008, vol. 26, p. 1197.CrossRefGoogle Scholar
  4. 4.
    Bret, T., Physico-chemical study of the focused electron beam induced deposition process, Ph.D. Thesis, Lausanne, 2005.Google Scholar
  5. 5.
    Hagen, C.W., van Dorp, W.F., Crozier, P.A., and Kruit, P., Surf. Sci., 2008, vol. 602, p. 3212.CrossRefADSGoogle Scholar
  6. 6.
    Fowlkes, J.D., Randolph, S.J., and Rack, P.D., J. Vac. Sci. Technol. B, 2005, vol. 23, p. 2825.CrossRefGoogle Scholar
  7. 7.
    Toth, M., Lobo, Ch.J., Hartigan, G., and Knowles, W.R., J. Appl. Phys., 2007, vol. 101, p. 054309.CrossRefADSGoogle Scholar
  8. 8.
    Smith, D.A., Fowlkes, J.D., and Rack, P.D., Nanotecnology, 2007, vol. 18, no. 26, p. 265308.CrossRefADSGoogle Scholar
  9. 9.
    Rykaczewski, K., White, W.B., and Fedorov, A.G., J. Appl. Phys., 2007, vol. 101, p. 054307.CrossRefADSGoogle Scholar
  10. 10.
    Alkemade, P.F.A., Chen, P., van Veldhoven, E., and Maas, D., J. Vac. Sci. Technol. B, 2010, vol. 28, p. C6F22.CrossRefGoogle Scholar
  11. 11.
    Schiffmann, K.I., Nanotecnology, 1993, vol. 4, p. 163.CrossRefADSGoogle Scholar
  12. 12.
    Rykaczewski, K., Marshall, A., White, W.B., and Fedorov, A.G., Ultramicroscopy, 2008, vol. 108, p. 989.CrossRefGoogle Scholar
  13. 13.
    Zhdanov, G.S., Manukhova, A.D., Sharov, T.V., and Kapitonov, Yu.V., Bull. Russ. Acad. Sci. Phys., 2013, vol. 77, no. 8, p. 935.CrossRefGoogle Scholar
  14. 14.
    Zhdanov, G.S., Poverkhnost’, 1983, no. 1, p. 65.Google Scholar
  15. 15.
    Allen, T.E., Runz, R.R., and Mayer, T.M., J. Vac. Sci. Technol. B, 1988, vol. 6, p. 2057.CrossRefGoogle Scholar
  16. 16.
    Nosker, R.W., J. Appl. Phys., 1969, vol. 40, p. 1872.CrossRefADSGoogle Scholar
  17. 17.
    Seiler, H., J. Appl. Phys., 1983, vol. 54, p. R1.CrossRefADSGoogle Scholar
  18. 18.
    Amman, M., Sleight, J.W., Lombardi, D.R., et al., J. Vac. Sci. Technol. B, 1996, vol. 14, p. 54.CrossRefGoogle Scholar
  19. 19.
    Heide, H.G., Z. Angew. Phys., 1964, vol. 17, p. 70.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • G. S. Zhdanov
    • 1
  • A. D. Manukhova
    • 1
  • M. S. Lozhkin
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations