Quantum key distribution in an optical fiber at distances of up to 200 km and a bit rate of 180 bit/s

  • A. V. Glejm
  • A. A. Anisimov
  • L. N. Asnis
  • Yu. B. Vakhtomin
  • A. V. Divochiy
  • V. I. Egorov
  • V. V. Kovalyuk
  • A. A. Korneev
  • S. M. Kynev
  • Yu. V. Nazarov
  • R. V. Ozhegov
  • A. V. Rupasov
  • K. V. Smirnov
  • M. A. Smirnov
  • G. N. Goltsman
  • S. A. Kozlov
Proceedings of the X International Symposium on Photon Echoes and Coherent Spectroscopy

Abstract

An experimental demonstration of a subcarrier-wave quantum cryptography system with superconducting single-photon detectors (SSPDs) that distributes a secure key in a single-mode fiber at distance of 25 km with a bit rate of 800 kbit/s, a distance of 100 km with a bit rate of 19 kbit/s, and a distance of 200 km with a bit rate of 0.18 kbit/s is described.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aoki, K., Franke, J., Lenstra, A.K., et al., Proc. 30th Annu. Conf. on Advances in Cryptology, Santa Barbara, 2010, p. 333.Google Scholar
  2. 2.
    The D-Wave Two™ System. http://www.dwave-sys.com/en/products-services.html. Accessed 15.08.2013.
  3. 3.
    Politi, A., Matthews, J.C.F., and O’Brien, J.L., Science, 2009, vol. 325, no. 5945, p. 1221.CrossRefMATHMathSciNetADSGoogle Scholar
  4. 4.
    Lu, C., Browne, D.E., Yandg, T., and Pan, J.-W., Phys. Rev. Lett., 2007, vol. 99, p. 250504.CrossRefADSGoogle Scholar
  5. 5.
    Bennett, C. and Brassard, G., Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing, Bangalore, 1984, p. 175.Google Scholar
  6. 6.
    Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., et al., Rev. Mod. Phys., 2009, vol. 81, p. 1301.CrossRefADSGoogle Scholar
  7. 7.
    Wootters, W.K. and Zurek, W.H., Nature, 1982, vol. 299, p. 802.CrossRefADSGoogle Scholar
  8. 8.
    Mazurenko, Yu.T., Merolla, J.-M., and Goedgebuer, F.J., Opt. Spektroskop., 1999, vol. 86, no. 2, p. 181.Google Scholar
  9. 9.
    Guerreau, O.L., Merolla, J.-M., Soujaeff, A., et al., IEEE J. Select. Topics Quant. Electron., 2003, vol. 9, no. 6, p. 1533.CrossRefGoogle Scholar
  10. 10.
    Cussey, J., Bloch, M., Merolla, J.-M., and McLaughlin, S.W., Opt. Networks Technol. IFIP Int. Federat. Inf. Processing, 2005, vol. 164, p. 390.CrossRefGoogle Scholar
  11. 11.
    Bloch, M., McLaughlin, S.W., and Merolla, J.-M., Opt. Lett., 2007, vol. 32, no. 3, p. 301.CrossRefADSGoogle Scholar
  12. 12.
    Rupasov, A.V., Gleim, A.V., Egorov, V.I., and Mazurenko, Yu.T., Nauch.-Tekhn. Vestn. Sankt-Peterburg. Gos. Univ. Inf. Tekhnol. Mekhan. Opt., 2011, no. 02(72), p. 95.Google Scholar
  13. 13.
    Gol’tsman, G.N., Okunev, O., Chulkova, G., et al., Appl. Phys. Lett., 2001, vol. 79, no. 6, p. 705.CrossRefADSGoogle Scholar
  14. 14.
    Bennett, C.H., Phys. Rev. Lett., 1992, vol. 68, p. 3121CrossRefMATHMathSciNetADSGoogle Scholar
  15. 15.
    Gisin, N., Ribordy, G., Tittel, W., and Zbinden, H., Rev. Mod. Phys., 2002, vol. 74, p. 145.CrossRefADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • A. V. Glejm
    • 1
  • A. A. Anisimov
    • 2
  • L. N. Asnis
    • 1
  • Yu. B. Vakhtomin
    • 3
  • A. V. Divochiy
    • 3
  • V. I. Egorov
    • 1
  • V. V. Kovalyuk
    • 3
  • A. A. Korneev
    • 4
  • S. M. Kynev
    • 1
  • Yu. V. Nazarov
    • 1
  • R. V. Ozhegov
    • 3
  • A. V. Rupasov
    • 1
  • K. V. Smirnov
    • 3
  • M. A. Smirnov
    • 1
  • G. N. Goltsman
    • 4
  • S. A. Kozlov
    • 1
  1. 1.National University of Information Technologies, Mechanics, and Optics ResearchSt. PetersburgRussia
  2. 2.National Scientific Research Institute of Radio Engineering and ElectronicsMoscowRussia
  3. 3.ZAO Superconducting NanotechnologyMoscowRussia
  4. 4.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations