Advertisement

Bulletin of the Russian Academy of Sciences: Physics

, Volume 77, Issue 9, pp 1123–1126 | Cite as

Resonant photoemission spectroscopy of Cu(InGa)Se2 materials for solar cells

  • V. I. GrebennikovEmail author
  • T. V. Kuznetsova
  • M. V. Yakushev
Proceedings of the 19th National Conference on the Application of Synchrotron Radiation “SR-2012” and National Youth Conference “Application of Synchrotron Radiation” Section of Spectroscopy

Abstract

The electron structure of CuIn1 − x Ga x Se2 single crystals is determined via resonant photoemis-sion and the main regularities of its transformation upon varying concentration x from 0 to 1 are established. The dependence of the shape of valence band spectra on the photon energy is studied. Integral photoemission intensities are shown to be determined by atomic photoionization cross sections. Processes of the direct and two-step creation of photoelectrons accompanying photoemission and the participation of internal states in the spectra of electrons from valence bands are studied. Two-hole final states in photoemission are obtained upon threshold excitation of the Cu 2p level. The strong interaction of holes leads to the multiplet splitting of these states. Partial densities of the components’ states are determined using the energy dependence of atomic photoionization cross sections.

Keywords

Valence Band Partial Density Ionization Cross Section CuInSe Photoionization Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chopra, K.L., Paulson, P.D., and Dutta, V., Prog. Photovolt: Res. Appl., 2004, vol. 12, p. 69.CrossRefGoogle Scholar
  2. 2.
    Bagnall, D.M. and Boreland, M., Energy Policy, 2008, vol. 36, p. 4390.CrossRefGoogle Scholar
  3. 3.
    Sung-Ho Han, Persson, C., Hasoon Falah, S., et al., Phys. Rev. B, 2006, vol. 74, p. 085212.ADSCrossRefGoogle Scholar
  4. 4.
    Rincon, C., Wasim, S.M., Marin, G., and Molina, I., J. Appl. Phys., 2003, vol. 93, p. 780.ADSCrossRefGoogle Scholar
  5. 5.
    Zhang, S.B., Su-Huai Wei, Zunger, A., and Katayama-Yosida, H., Phys. Rev. B, 1998, vol. 57, p. 9642.ADSCrossRefGoogle Scholar
  6. 6.
    Gloskovskii, A., Jenkins, C.A., Ouardi, S., et al., Appl. Phys. Lett., 2012, vol. 100, p. 092108.ADSCrossRefGoogle Scholar
  7. 7.
    Hofmann, A. and Pettenkofer, C., Phys. Rev. B, 2011, vol. 84, p. 115109.ADSCrossRefGoogle Scholar
  8. 8.
    Yablonskikh, M.V., Yarmoshenko, Yu.M., Grebennikov, V.I., et al., Phys. Rev. B, 2001, vol. 63, no. 23, p. 235117.ADSCrossRefGoogle Scholar
  9. 9.
    Grebennikov, V.I., Poverkhn. Rentgen., Sinkhrotron. Neitron. Issl., 2002, no. 11, p. 41.Google Scholar
  10. 10.
    Löher, T., Klein, A., Pettenkofer, C., and Jaegermann, W., J. Appl. Phys., 1997, vol. 81, p. 7806.ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • V. I. Grebennikov
    • 1
    Email author
  • T. V. Kuznetsova
    • 1
  • M. V. Yakushev
    • 2
  1. 1.Institute of Metal Physics, Ural BranchRussian Academy of SciencesYekaterinburgRussia
  2. 2.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations