Skip to main content
Log in

Fluctuation approach to the problem of thermodynamics’ applicability to nanoparticles

  • OMA-13
  • Published:
Bulletin of the Russian Academy of Sciences: Physics Aims and scope

Abstract

The root-mean square fluctuations of the temperature and energetic surface tension of metallic and molecular nanoparticles have been estimated. It is revealed that the relative value of mentioned fluctuations is not higher than several percents even for the particles of 0.5 nm in size. We thus conclude that it is possible to apply the thermodynamic approach to nanoparticles with fluctuating properties, and the fluctuations do not lead to nanoparticle instability and decay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Samsonov, V.M., Izv. Akad. Nauk. Ser. Fiz., 2005, vol. 69, no. 7, p. 1036.

    MathSciNet  Google Scholar 

  2. Samsonov, V.M., Kharechkin, S.S., Gafner, S.L., et al., Izv. Akad. Nauk. Ser. Fiz., 2010, vol. 74, no. 5, p. 707 [Bull. Russ. Acad. Sci. Phys. (Engl. Transl.), 2010, vol. 74, no. 5, p. 673].

    Google Scholar 

  3. Landau, L.D. and Lifshits, E.M., Staticheskaya fizika (Statical Physics), Moscow: Fizmatlit, 1995, part 1, chapter 12, pp. 372–446.

    Google Scholar 

  4. Rumer, Yu.B. and Ryvkin, M.Sh., Termodinamika, statisticheskaya fizika i kinetika (Thermodynamics, Statistical Physics and Kinetics), Moscow: Nauka, 1977, chapter 7, pp. 358–367.

    Google Scholar 

  5. Leontovich, M.A., Vvedenie v termodinamiku. Statisticheskaya fizika (Introduction to Thermodynamics. Statistical Physics), Moscow: Nauka, 1983, part II, chapter 3, pp. 241–281.

    Google Scholar 

  6. Gibbs, J.W., Termodinamicheskie raboty (Thermodynamic Works), Moscow: GITTL, 1950.

    Google Scholar 

  7. Frenkel’, Ya.I., Statisticheskaya fizika (Statistical Physics), Moscow-Leningrad: Akad. Nauk SSSR, 1948.

    Google Scholar 

  8. Hill, T.L., Thermodynamics of Small Systems, New York, Amsterdam: W.A. Benjamin, 1963, part 1.

    MATH  Google Scholar 

  9. Guggenheim, E.A., Modern Thermodynamics by the Methods of Willard Gibbs, London: Methuen, 1933; Moscow: Gos. nauch.-tekhn. izd. khim. lit., 1941, p. 149.

    Google Scholar 

  10. Makarov, G.N., Usp. Fiz. Nauk, 2008, vol. 178, no. 4, p. 337.

    Article  Google Scholar 

  11. Vargaftik, N.B., Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei (Handbook on Thermalphysical Properties for Fluids), Moscow: Gos. izd. fiz.-mat. lit., 1963, pp. 192–195.

    Google Scholar 

  12. Fizicheskie velichiny. Spravochnik (Physical Quantities. Handbook), Grigor’ev, I.S. and Meilikhov, E.Z., Eds., Moscow: Energoatomizdat, 1991, p. 199.

    Google Scholar 

  13. Cherevko, A.G., Khokhlov, V.A., and Minchenko, V.I., Materialy II Mezhdunarodnogo simpoziuma MCMO-2 (Proc. II Int. Symp. MCMO-2), Rostov-on-Don-Loo: Izd. Yuzhn. Federal’n. Univ., 2009, pp. 170–173.

    Google Scholar 

  14. Cherevko, A.G., Kolloidn. Zh., 2009, vol. 71, no. 6, p. 852.

    Google Scholar 

  15. Frenkel, Ya.I., Kineticheskaya teoriya zhidkostey (Kinetic Theory of Liquids), Leningrad: Nauka, 1975, pp. 419–465.

    Google Scholar 

  16. Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: J. Wiley & Sons, Inc. 1954; Moscow: Inostrannaya Literatura, 1961, pp. 851–853.

    MATH  Google Scholar 

  17. Regel’, A.R. and Glazov, V.M., Periodicheskii zakon i fizicheskie svoistva elektronnykh rasplavov (Periodic Law and Physical Properties of Electronic Melts), Moscow: Nauka, 1978, pp. 142–157.

    Google Scholar 

  18. Khokonov, Kh.B., Poverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh (Surface Phenomena in Melts and Solid Phases Generated by Them), Chisinau: Shtinitsa, 1974, pp. 190–261.

    Google Scholar 

  19. Croxton, C., Liquid State Physics, Cambridge: Univ. Press, 1974; Moscow: Mir, 1978, p. 231.

    Google Scholar 

  20. Rusanov, A.I., Termodinamika poverkhnostnykh yavlenii (Thermodynamics of Surface Phenomena), Leningrad: Izd. Leningrad. univ., 1960.

    Google Scholar 

  21. Vitol’, E.N., Kolloidn. Zh., 1992, vol. 54, no. 3, p. 21.

    Google Scholar 

  22. Samsonov, V.M., Khashin, V.A., and Dronnikov, V.V., Kolloidn. Zh., 2008, vol. 70, no. 6, p. 816 [Colloid. J. (Engl. Transl.), 2008, vol. 70, no. 6, p. 763]..

    Google Scholar 

  23. Veitsman, E.V., J. Colloid Interface Sci., 2007, vol. 308, p. 100.

    Article  Google Scholar 

  24. Levich, V.G., Kurs teoreticheskoi fiziki (Course of Theoretical Physics), Moscow: Nauka, 1969, vol. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Samsonov.

Additional information

Original Russian Text © V.M. Samsonov, D.E. Demenkov, V.I. Karacharov, A.G. Bembel’, 2011, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2011, Vol. 75, No. 8, pp. 1133–1137.

About this article

Cite this article

Samsonov, V.M., Demenkov, D.E., Karacharov, V.I. et al. Fluctuation approach to the problem of thermodynamics’ applicability to nanoparticles. Bull. Russ. Acad. Sci. Phys. 75, 1073–1077 (2011). https://doi.org/10.3103/S106287381108034X

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S106287381108034X

Keywords

Navigation