Advertisement

Plasmonic amplification of single exciton transitions in InGaN

  • A. A. Toropov
  • K. G. Belyaev
  • V. Kh. Kaibyshev
  • T. V. Shubina
  • V. N. Zhmerik
  • S. V. Ivanov
  • P. S. Kop’ev
Article

Abstract

An increase in the rate of spontaneous recombination of excitons localized in films of InGaN solid solution due to interaction with a plasmon localized in a gold nanoparticle was experimentally observed. The particle is positioned near the surface with the help of a near -field scanning optical microscope or in the result of chemical precipitation from a colloidal solution. Precise positioning of a plasmonic particle allows single excitons with 1—2 meV-wide radiation lines to be revealed and amplified.

Keywords

Gold Nanoparticle Gold Particle Localize Exciton Solid Solution Composition Spontaneous Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pursell, E.M., Phys. Rev. B, 1946, vol. 69, p. 681.Google Scholar
  2. 2.
    Michler, P., Kiraz, A., Becher, C., Schoenfeld, W.V., Petroff, P.M., Zhang, L., Hu, E., and Imamoly, A., Science, 2000, vol. 290. p. 2282.CrossRefADSGoogle Scholar
  3. 3.
    Kako, S., Santori, C., Hoshino, K., Götzinger, S., Yamamoto, Y., and Arakawa, Y., Nat. Mater., 2006, vol. 5, p. 887.CrossRefADSGoogle Scholar
  4. 4.
    Sebald, K., Michler, P., Passow, T., Hommel, D., Bacher, G., and Forchel, A., Appl. Phys. Lett., 2002, vol. 81, p. 2920.CrossRefADSGoogle Scholar
  5. 5.
    Lakowicz, J.R., Anal. Biochem., 2001, vol. 298, p. 1.CrossRefGoogle Scholar
  6. 6.
    Farahani, J.N., Pohl, D.W., Eisler, H.-J., and Hecht, B., Phys. Rev. Lett., 2005, vol. 95, p. 017402.CrossRefADSGoogle Scholar
  7. 7.
    Jmerik, V.N., Mizerov, A.M., Shubina, T.V., Yagovkina, M., Listoshin, V.B., Sitnikova, A.A., Ivanov, S.V, Kim, M.-H., Koike, M., and Kim, B.-J., J. Crystal Growth, 2007, vols. 301-302, p. 469.CrossRefADSGoogle Scholar
  8. 8.
    Barnes, W.L., J. Mod. Opt., 1998, vol. 45, p. 661.ADSGoogle Scholar
  9. 9.
    Gersten, J. and Nitzan, A., J. Chem. Phys., 1981, vol. 75, p. 1139.CrossRefADSGoogle Scholar
  10. 10.
    Weitz, D.A., Garoff, S., Gersten, J.I., and Nitzan, A., J. Chem. Phys., 1983, vol. 78, p. 5324.CrossRefADSGoogle Scholar
  11. 11.
    Klimov, V.V., Ducloy, M., and Letokhov, V.S., Chem. Phys. Lett., 2002, vol. 358, p. 192.CrossRefADSGoogle Scholar
  12. 12.
    Wakahara, A., et al., Appl. Phys. Lett., 1997, vol. 71, p. 906.CrossRefADSGoogle Scholar
  13. 13.
    Singh, R.,et al., Appl.Phys. Lett., 1997,vol. 70, p.1089.CrossRefADSGoogle Scholar
  14. 14.
    Chichibu, S., et al., Appl. Phys. Lett., 1997, vol. 70, p. 2822.CrossRefADSGoogle Scholar
  15. 15.
    Song, T.L., J. Appl. Phys., 2005, vol. 98, p. 084906.CrossRefADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • A. A. Toropov
    • 1
  • K. G. Belyaev
    • 1
  • V. Kh. Kaibyshev
    • 1
  • T. V. Shubina
    • 1
  • V. N. Zhmerik
    • 1
  • S. V. Ivanov
    • 1
  • P. S. Kop’ev
    • 1
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations