Electronic transport in mesoscopic superconductor/2D electron gas junctions in strong magnetic field

  • I. E. Batov
  • Th. Schaepers
  • N. M. Chtchelkatchev
  • A. A. Golubov
  • H. Hardtdegen
  • A. V. Ustinov
Proceedings of the International Symposium “Low-Dimensional Systems and Surfaces” (LDS-2008), Proceedings of the International Symposium “Orderings in Minerals and Alloys” (OMA-11) and Proceedings of the International Symposium “Order, Disorder,


The hybrid superconductor/2D electron gas (S/2DEG) structures based on InGaAs-InP hetero-junctions with a high-mobility 2D electron gas and superconducting NbN electrodes have been investigated. The electronic transport and current-voltage characteristics of S/2DEG/normal metal (S/2DEG/N) structures in strong perpendicular magnetic fields have been studied. Oscillations in the magnetoresistance of S/2DEG/N structures have been found in strong magnetic fields. It is shown that at bias voltages lower than the superconducting gap the amplitude of oscillations in S/2DEG/N structures significantly exceeds the oscillation amplitude in the reference N/2DEG/N samples. The experimental results can be explained within the quasiclassical theory of magnetotransport in S/2DEG structures developed by N.M. Chtchelkatchev and I.S. Burmistrov (Phys. Rev. B, 2007, vol. 75, 214 510).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Asano, Y., Phys. Rev. B, 2000, vol. 61, p. 1732.CrossRefADSGoogle Scholar
  2. 2.
    Asano, Y. and Yuito, T., Phys. Rev. B, 2000, vol. 62, p. 7477.CrossRefADSGoogle Scholar
  3. 3.
    Asano, Y. and Kato, T., J. Phys. Soc. Jpn., 2000, vol. 629, p. 1125.CrossRefADSGoogle Scholar
  4. 4.
    Chtchelkatchev, N.M., JETP Lett., 2001, vol. 73, p. 94.CrossRefADSGoogle Scholar
  5. 5.
    Chtchelkatchev, N.M. and Burmistrov, I.S., Phys. Rev. B, 2007, vol. 75, 214 510.Google Scholar
  6. 6.
    Hoppe, H., Zuelicke, U., and Schoen, G., Phys. Rev. Lett., 2000, vol. 84, p. 1804.CrossRefADSGoogle Scholar
  7. 7.
    Giazotto, F., Governale, M., Zuelicke, U., et al., Phys. Rev. B, 2005, vol. 72, 54 518.CrossRefGoogle Scholar
  8. 8.
    Bezuglyi, E.V., Rozhavsky, A.S., Vagner, I.D., et al., Phys. B, 2002, vol. 66, 052 508.Google Scholar
  9. 9.
    Tkachov, G. and Fal’ko, V.I., Phys. Rev. B, 2004, vol. 69, 092 503.Google Scholar
  10. 10.
    Tkachov, G. and Richter, K., Phys. Rev. B, 2005, vol. 71, 094 517.Google Scholar
  11. 11.
    Blonder, G.E., Tinkham, E.M., and Klapwijk, T.M., Phys. Rev. B, 1982, vol. 25, p. 4515.CrossRefADSGoogle Scholar
  12. 12.
    Batov, I.E., Schaepers, Th., Golubov, A.A., et al., J. Appl. Phys., 2004, vol. 96, p. 3366.CrossRefADSGoogle Scholar
  13. 13.
    Batov, I.E., Schaepers, Th., Chtchelkatchev, N.M., et al., Phys. Rev. B, 2007, vol. 76, 115 313.Google Scholar

Copyright information

© Allerton Press, Inc. 2009

Authors and Affiliations

  • I. E. Batov
    • 1
    • 2
  • Th. Schaepers
    • 3
  • N. M. Chtchelkatchev
    • 4
  • A. A. Golubov
    • 5
  • H. Hardtdegen
    • 3
  • A. V. Ustinov
    • 2
  1. 1.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Physikalisches Institut IIIUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Institute of Bio- and Nanosystems (IBN-1) and cni-Center of Nanoelectronic Systems for Information TechnologyResearch Centre JuelichJuelichGermany
  4. 4.Landau Institute for Theoretical PhysicsMoscowRussia
  5. 5.University of TwenteEnschedeThe Netherlands

Personalised recommendations