SHS of Ti3SiC2-Based Materials in the Ti–Si–C System: Impact of Silicon Excess

  • J. LisEmail author
  • L. ChlubnyEmail author
  • K. Witulska
  • P. Borowiak
  • K. Kozak
  • A. Misztal
  • O. Czajkowska


For SHS of Ti3SiC2-based materials in the Ti–Si–C system, we explored the impact of silicon excess on the composition of resultant MAX-phase material by XRD and SEM methods. After hot pressing, SHS-produced MAX-phase material was found to contain over 88 wt % of Ti3SiC2. The SHS-produced powders are sinterable and deserve further studies on their hot pressing and pressure-less reactive sintering.


SHS combustion synthesis MAX phases Ti3SiC2 silicon 



This work was financially supported by the National Science Center (grant no. 2013/11/B/ST5/02275).


  1. 1.
    Jeitschko, W., Nowotny, H., and Benesovsky, F., Kohlenstoffhaltige ternare Verbindungen (H-Phase), Monatsh. Chem., 1963, vol. 94, pp. 672–678. CrossRefGoogle Scholar
  2. 2.
    Nowotny, H., Structurchemie Einiger Verbindungen der Ubergangsmetalle mit den Elementen C, Si, Ge, Sn, Prog. Solid State Chem., 1970, vol. 2, pp. 27–70. CrossRefGoogle Scholar
  3. 3.
    Barsoum, M.W., The Mn+1AXn phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem., 2000, vol. 28, pp. 201–281. CrossRefGoogle Scholar
  4. 4.
    Barsoum, M.W., MAX Phases: Properties of Machinable Ternary Carbides and Nitrides, New York: Wiley–VCH, 2013.CrossRefGoogle Scholar
  5. 5.
    Eklund, P., Beckers, M., Jansson, U., Högberg, H., and Hultman, L., The Mn+1AXn phases: Materials science and thin-film processing, Thin Solid Films, 2010, vol. 518, pp. 1851–1878. CrossRefGoogle Scholar
  6. 6.
    Dahlqvist, M., Alling, B., and Rosén, J., Stability trends of MAX phases from first principles, Phys. Rev. B: Condens. Matter Mater. Phys., 2010, vol. 81, no. 22, 220102. CrossRefGoogle Scholar
  7. 7.
    Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, no. 5, pp. 283–287. CrossRefGoogle Scholar
  8. 8.
    Wang, X.H. and Zhou, Y.C., Layered machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: A review, J. Mater. Sci. Technol., 2010, vol. 26, no. 5, pp. 385–416. CrossRefGoogle Scholar
  9. 9.
    Chlubny, L., Lis, J., and Bućko, M.M., Influence of precursors stoichiometry on SHS synthesis of Ti2AlC powders, Ceram. Eng. Sci. Proc., 2013, vol. 34, no. 10, pp. 263–271. CrossRefGoogle Scholar
  10. 10.
    Chlubny, L., Lis, J., Borowiak, P., and Chabior, K., Influence of hot-pressing time on phase evolution of SHS obtained Ti2AlC active precursor powder, Ceram. Trans. Ser., 2018, vol. 261, pp. 197–205. CrossRefGoogle Scholar
  11. 11.
    Chlubny, L. and Lis, J., Influence of precursors stoichiometry on SHS synthesis of Ti3AlC2 powders, Ceram. Trans. Ser., 2013, vol. 240, pp. 79–85. CrossRefGoogle Scholar
  12. 12.
    Chlubny, L., Lis, J., and Bućko, M.M., Influence of nitrogen pressure on SHS synthesis of Ti2AlN powders, Ceram. Eng. Sci. Proc., 2015, pp. 251–260. CrossRefGoogle Scholar
  13. 13.
    Vadchenko, S.G., Sytschev, A.E., Kovalev, D.Yu., Shchukin, A.S., and Konovalikhin, S.V., Self-propagating high-temperature synthesis in the Ti–Si–C system: Features of product patterning, Nanotechnol. Russ., 2015, vol. 10, nos. 1–2, pp. 67–74. CrossRefGoogle Scholar
  14. 14.
    Radovic, M. and Barsoum, M.W., MAX phases: Bridging the gap between metals and ceramics, Am. Ceram. Soc. Bull., 2013, vol. 92, no. 3, pp. 20–27.Google Scholar
  15. 15.
    Joint Commitee for Powder Diffraction Standards: International Center for Diffraction Data.Google Scholar
  16. 16.
    Rietveld, H.M., A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr., 1969, vol. 2, pp. 65–71. CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.AGH University of Science and Technology, Faculty of Materials Science and CeramicsCracowPoland

Personalised recommendations