Combustion of Gasless Systems: Thermocapillary Convection of Metal Melt

  • O. V. LapshinEmail author
  • V. G. Prokof’evEmail author


The role of thermocapillary convection in combustion of gasless binary mixtures containing a low-melting reagent was explored by numerical modeling. Variation in relative amounts of reagents and starting sample porosity was found to change a mode of combustion wave propagation over the binary systems under consideration.


SHS combustion synthesis thermocapillary convection numerical modeling 



This work was financially supported by the Russian Foundation for Basic Research (project no. 19-03-00081) and carried out within the state task for TSC SB RAS (project no. 0365-2019-0004).


  1. 1.
    Shkiro, V.M. and Borovinskaya, I.P., Capillary flow of liquid metal during combustion of titanium mixtures with carbon, Combust. Explos. Shock Waves, 1976, vol. 12, no. 6, pp. 828–831. CrossRefGoogle Scholar
  2. 2.
    Nekrasov, E.A., Maksimov, Yu. M., and Ziatdinov, M. Kh., Effect of capillary spreading on combustion wave propagation in gas-free system, Combust. Explos. Shock Waves, 1978, vol. 14, no. 5, pp. 575–581. CrossRefGoogle Scholar
  3. 3.
    Kirdyashkin, A.I., Maksimov, Yu.M., and Merzhanov, A.G., Effects of capillary flow on combustion in a gas-free system, Combust. Explos. Shock Waves, 1981, vol. 17, no. 6, pp. 591–595. CrossRefGoogle Scholar
  4. 4.
    Kirdyashkin, A.I., Lepakova, O.K., Maksimov, Yu.M., and Pak, A.T., Structural transformations of powder mixture components in a gasless combustion wave, Combust. Explos. Shock Waves, 1989, vol. 25, no. 6, pp. 718–723. CrossRefGoogle Scholar
  5. 5.
    Maksimov, Yu.M., Kirdyashkin, A.I., Ziatdinov, M.Kh., and Kitler, V.D., Interphase convection in the contact interaction of metals under non-isothermal conditions, Combust. Explos. Shock Waves, 2000, vol. 36, no. 4, pp. 462–469. CrossRefGoogle Scholar
  6. 6.
    Kirdyashkin, A.I., Kitler, V.D., Salamatov, V.G., Yusupov, R.A., and Maksimov, Yu.M., Capillary hydrodynamic phenomena in gas-free combustion, Combust. Explos. Shock Waves, 2007, vol. 43, no. 6, pp. 645–653. CrossRefGoogle Scholar
  7. 7.
    Kirdyashkin, A.I., Kitler, V.D., Salamatov, V.G., Yusupov, R.A., Maksimov, Yu.M., Specific features of structural dynamics of high-temperature metallothermal processes with the FeO-Al-Al2O3 system as an example, Combust. Explos. Shock Waves, 2008, vol. 44, no. 1, pp. 71–75. CrossRefGoogle Scholar
  8. 8.
    Rogachev, A.S., Vadchenko, S.G., Sachkova, N.V., Illarionova, E.V., Vagin, V.P., and Kostikov, V.I., On the mechanism of the initial stage of titanium–carbon interaction, Dokl. Phys. Chem., vol. 478, no. 2, pp. 27–30. CrossRefGoogle Scholar
  9. 9.
    Prokofiev, V.G. and Smolyakov, V.K., Thermocapillary convection in a gasless combustion wave, Combust. Explos. Shock Waves, 2019, vol. 55, no. 1, pp. 89–96. CrossRefGoogle Scholar
  10. 10.
    Prokof’ev, V.G. and Smolyakov, V.K., Spinning combustion regimes in gasless systems containing one melting component, Russ. J. Phys. Chem. B, 2016, vol. 10, no. 6, pp. 997–1000. CrossRefGoogle Scholar
  11. 11.
    Prokof’ev, V.G. and Smolyakov, V.K., Effect of the phase transition on three-dimensional unstable regimes of gasless combustion, Combust. Explos. Shock Waves, 2016, vol. 52, no. 3, pp. 313–319. CrossRefGoogle Scholar
  12. 12.
    Prokof’ev, V.G. and Smolyakov, V.K., Effect of melting of inert components and melt flow on nonstationary combustion of gasless systems, Combust. Explos. Shock Waves, 2018, vol. 54, no. 1, pp. 24–29. CrossRefGoogle Scholar
  13. 13.
    Popel, S. I., Poverkhnostnye yavleniya v rasplavakh (Surface Phenomena in Melts), Moscow: Metallurgiya, 1994, pp. 292–328.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Tomsk Scientific Center, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations