Solution Combustion Synthesis of ZnO Using Binary Fuel (Glycine + Citric Acid)

  • Sh. M. KhaliullinEmail author
  • V. D. ZhuravlevEmail author
  • L. V. ErmakovaEmail author
  • L. Yu. Buldakova
  • M. Yu. Yanchenko
  • N. M. Porotnikova


Solution combustion synthesis (SCS) of zinc oxide was performed using a binary fuel, glycine and citric acid. It was established that combustion occurs due to oxidation of zinc nitrate–glycine complexes. Citric acid acts as an inhibitor of SCS reaction. An increase in relative content of organic fuel in the solution leads to a reduction in maximal combustion temperature and to formation of elemental carbon (0.2–1.6 wt %) and organic fragments (1.55–3.29 wt %) in SCS-produced zinc oxide. Carbon impurity and organic fragments were removed by annealing at 600°С. The produced wurtzite-type ZnO crystals had a size of 27–37 nm and were assembled into agglomerates. After annealing at 500°С, the specific surface of the powder was 8.44–11.09 m2/g. The photocatalytic activity of ZnO powder was evaluated from the rate of hydroquinone photodecomposition in solution.


solution combustion synthesis binary fuel zinc oxide temperature profiles photocatalytic activity 



This work was carried out in the framework of state-supported program for the Institute of Solid State Chemistry (nos. АААА-А19-119031890026-6, AAAA-A19-119031890028-0).


  1. 1.
    Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.Google Scholar
  2. 2.
    Tabasco-Novelo, C., May-Crespo, J., Ramírez-Rincón, J.A., Forero-Sandoval, I.Y., Rodríguez-Gattorno, G., Quintana, P., Alvarado-Gil, J.J., Effects of sintering on the thermal and optical properties of zinc oxide ceramic, Int. J. Thermophys., 2018, vol. 39, no. 2, article 22. CrossRefGoogle Scholar
  3. 3.
    Kinemuchi, Y., Mikami, M., Kobayashi, K., Watari, K., and Hotta, Y., Thermoelectric properties of nanograined ZnO, J. Electron. Mater., 2010, vol. 39, no. 9, pp. 2059–2063. CrossRefGoogle Scholar
  4. 4.
    Özgür, Ü., Hofstetter, D., and Morkoç, H., ZnO devices and applications: A review of current status and future prospects, Proc. IEEE, 2010, vol. 98, no. 7, pp. 1255–1268. CrossRefGoogle Scholar
  5. 5.
    Hembram, K., Sivaprahasam, D., and Rao, T.N., Combustion synthesis of doped nanocrystalline ZnO powders for varistor applications, J. Eur. Ceram. Soc., 2011, vol. 31, no. 10, pp. 1905–1913. CrossRefGoogle Scholar
  6. 6.
    Matei, A., Tucureanu, V., Dumitrescu, L., Aspects regarding synthesis and applications of ZnO nanomaterials, Bull. Transilv. Univ. Braşov, Ser. I:Eng. Sci., 2014, vol. 7, no. 2, pp. 45–52.Google Scholar
  7. 7.
    Orante-Barrón, V.R., Escobar-Ochoa, F.M., Cruz-Vázquez, C., and Bernal, R., Thermoluminescence of novel zinc oxide nanophosphors obtained by glycine-based solution combustion synthesis, J. Nanomater., 2015, 273571. CrossRefGoogle Scholar
  8. 8.
    Moezzi, A., McDonagh, A.M., and Cortie, M.B., Zinc oxide particles: Synthesis, properties and applications, Chem. Eng. J., 2012, vols. 185–186, pp. 1–22. CrossRefGoogle Scholar
  9. 9.
    Hull, S. and Trawczynski, J., Steam reforming of ethanol on zinc containing catalysts with spinel structure, Int. J. Hydrogen Energy, 2014, vol. 39, no. 9, pp. 4259–4265. CrossRefGoogle Scholar
  10. 10.
    Vinay Kumar, B., Bhojya Naik, H.S., Girijab, D., and Vijaya Kumar, B., ZnO nanoparticle as catalyst for efficient green one-pot synthesis of coumarins through Knoevenagel condensation, J. Chem. Sci., 2011, vol. 123, no. 5, pp. 615–621. CrossRefGoogle Scholar
  11. 11.
    Banerjee, B., Recent developments on nano ZnO catalyzed synthesis of bioactive heterocycles, J. Nanostr. Chem., 2017, vol. 7, no. 4, pp. 389–413. CrossRefGoogle Scholar
  12. 12.
    Huang, L., Kramer, G.J., Wieldraaijer, W., Brands, D.S., Poels, E.K., Castricum, H.L., and Bakker, H., Methanol synthesis over Cu/ZnO catalysts prepared by ball milling, Catal. Lett., 1997, vol. 48, nos. 1–2, pp. 55–59. CrossRefGoogle Scholar
  13. 13.
    González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. A: Gen., 2013, vol. 452, pp. 117–131. CrossRefGoogle Scholar
  14. 14.
    Sun, Y., Chen, L., Bao, Y., Zhang, Y., Wang, J., Fu, M., Wu, J., and Ye, D., The applications of morphology controlled ZnO in catalysis, Catalysts, 2016, vol. 6, no. 12. CrossRefGoogle Scholar
  15. 15.
    Milenova, K.I., Nikolov, P.M., Kasabova, N.A., and Avramova, I.A., Ozone decomposition on ZnO catalysts obtained from different precursors, Pol. J. Chem. Technol., 2014, vol. 16, no. 4, pp. 55–59. CrossRefGoogle Scholar
  16. 16.
    Gaya, U.I., Comparative analysis of ZnO-catalyzed photo-oxidation of p-chlorophenols, Eur. J. Chem., 2011, vol. 2, no. 2, pp. 163–167. CrossRefGoogle Scholar
  17. 17.
    Gyrdasova, O.I., Krasil’nikov, V.N., Baklanova, I.V., Buldakova, L.Yu., and Yanchenko, M.Yu., Synthesis, structure, and optical and photocatalytic properties of quasi-one-dimensional ZnO doped with Co3O4 and carbon, Bull. Russ. Acad. Sci.: Phys., 2016, vol. 80, no. 11, pp. 1298–1302. CrossRefGoogle Scholar
  18. 18.
    Krasil'nikov, V.N., Dyachkova, T.V., Tyutyunnik, A.P., Gyrdasova, O.I., Melkozerova, M.A., Baklanova, I.V., Perevozchikova, Yu.A., Emelyanova, S.M., Weber, H.W., and Marchenkov, V.V., Magnetic and optical properties as well as EPR studies of polycrystalline ZnO synthesized from different precursors, Mater. Res. Bull., 2018, vol. 97, pp. 553–559. CrossRefGoogle Scholar
  19. 19.
    Ryu, J.-H., Kongsy, P., Limb, D.-Y., Choc, S.-B., and Song, J.-H., Facile glycothermal synthesis of ZnO nanopowder at low temperature, Ceram. Int., 2016, vol. 42, no. 15, pp. 17565–17570. CrossRefGoogle Scholar
  20. 20.
    Brintha, S.R. and Ajitha, M., Synthesis and characterization of ZnO nanoparticles via aqueous solution, sol–gel, and hydrothermal methods, IOSR J. Appl. Chem., 2015, vol. 8, no. 11, ver. 1, pp. 66–72.
  21. 21.
    Kumar, V.S.S. and Rao, K.V., Polymer assisted combustion synthesis of La-doped ZnO nanoparticles: Structural, thermal, optical, and morphological studies, J. Optoelectron. Biomed. Mater., 2017, vol. 9, no. 1, pp. 31–40.Google Scholar
  22. 22.
    Bai, D.S., Kumar, V.R., and Suvarna, R.P., Synthesis and characterization of zinc oxide nanoparticles by solution combustion method: DC conductivity studies, Indian J. Adv. Chem. Sci., 2017, vol. 5, no. 3, pp. 137–141. CrossRefGoogle Scholar
  23. 23.
    Lucilha, A.C., Afonso, R., Silva, P.R.C., Lepre, L.F., Andoc, R.A., and Dall’Antonia, L.H., ZnO prepared by solution combustion synthesis: Characterization and application as photoanode, J. Braz. Chem. Soc., 2014, vol. 25, no. 6, pp. 1091–1100. CrossRefGoogle Scholar
  24. 24.
    Khaliullin, Sh.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 139–148. CrossRefGoogle Scholar
  25. 25.
    Khaliullin, Sh.M., Bamburov, V.G., Russkikh, O.V., Ostroushko, A.A., and Zhuravlev, V.D., CaZrO3 Synthesis in combustion reactions with glycine, Dokl. Chem., 2015, vol. 461, no. 2, pp. 93–95. CrossRefGoogle Scholar
  26. 26.
    Krasil’nikov, V.N., Shtin, A.P., Gyrdasova, O.I., Polyakov, E.V., Buldakova, L.Yu., Yanchenko, M.Yu., Zainullina, V.M., Zhukov, V.P., Synthesis and photocatalytic activity of Ti1 – xVxO2 – yCy whiskers in hydroquinone oxidation in aqueous solutions, Russ. J. Inorg. Chem., 2010, vol. 55, no. 8, pp. 1184–1191. CrossRefGoogle Scholar
  27. 27.
    Farbun, I.A., Romanova, I.V., Terikovskaya, T.E., Dzanashvili, D.I., and Kirillov, S.A., Complex formation in the course of synthesis of zinc oxide from citrate solutions, Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1798–1803. CrossRefGoogle Scholar
  28. 28.
    Khaliullin, Sh.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of MZrO3 zirconates (M = Ca, Sr, Ba) in open reactor: Thermodynamic analysis and experiment, Int. J. Self-Propag. High-Temp. Synth., 2017, vol. 26, no. 2, pp. 93–101. CrossRefGoogle Scholar
  29. 29.
    Gyrdasova, O.I., Krasil’nikov, V.N., Shalaeva, E.V., Baklanova, I.V., Melkozerova, M.A., Buldakova, L.Yu., and Yanchenko, M.Yu., Optical and photocatalytic properties of quasi-one-dimensional ZnO activated by carbon, Mendeleev Commun., 2014, vol. 24, no. 3, 143–144. CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Institute of Solid State Chemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia
  2. 2.Institute of High-Temperature Electrochemistry, Ural Branch, Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations