Advertisement

Electron Beam Assisted Deposition of Ni–Al Coatings onto Steel Substrate

  • A. A. Bakinovskii
  • A. G. Knyazeva
  • M. G. KrinitcynEmail author
  • O. N. Kryukova
  • I. L. Pobol
  • V. V. Fedorov
  • J. Rajczyk
Article
  • 4 Downloads

Abstract

We suggest a mathematical model for electron-beam assisted deposition of protective coatings that involves the equations of heat conduction, chemical kinetics, and porosity evolution. The model was numerically applied to the reactive Ni–Al system and theoretical predictions were critically analyzed by comparison with experiment.

Keywords:

mathematical modeling electron-beam assisted deposition of coating Ni–Al system intermetallics additive manufacturing 

Notes

FUNDING

This work was financially supported by the Russian Foundation for Basic Research (project no. 16-58-00116) and the Russian Science Foundation (grant no. 17-19-01425).

REFERENCES

  1. 1.
    Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226.  https://doi.org/10.1016/S0065-2377(08)60093-9 CrossRefGoogle Scholar
  2. 2.
    Aruna, S.T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, nos. 3–4, pp. 44–50. doi ; Cirakoglu, M. and Bhaduri, S.B., Combustion synthesis processing of functionally graded materials in the Ti–B binary system, J. Alloys Comp., 2002, vol. 347, nos. 1–2, pp. 259–265.  https://doi.org/10.1016/S0925-8388(02)00499-1  https://doi.org/10.1016/j.cossms.2008.12.002
  3. 3.
    Song, X.J., Cui, H.Z., Cao, L.L., and Gulyaev, P.Y., Microstructure and evolution of (TiB2 + Al2O3)/NiAl composites prepared by self-propagation high-temperature synthesis, Trans. Nonferr. Met. Soc. China, 2016, vol. 26, no. 7, pp. 1878–1884.  https://doi.org/10.1016/S1003-6326(16)64265-6 CrossRefGoogle Scholar
  4. 4.
    Shokati, A.A., Parvin, N., and Shokati, M., Combustion synthesis of NiAl matrix composite powder reinforced by TiB2 and TiN particulates from Ni–Al–Ti–BN reaction system, J. Alloys Comp., 2014, vol. 585, pp. 637–643.  https://doi.org/10.1016/j.jallcom.2013.09.020 CrossRefGoogle Scholar
  5. 5.
    Hafs, A., Benaldjia, A., and Hafs, T., Superconducting Nb3Al by combustion synthesis: Structural characterization, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 159–165.  https://doi.org/10.3103/S106138621603002X CrossRefGoogle Scholar
  6. 6.
    Feng, G., Li, Z., Jacob, R.J., Yang, Y., Wang, Y., Zhou, Z., and Zachariah, M.R., Laser-induced exothermic bonding of carbon fiber/Al composites and TiAl alloys, Mater. Design, 2017, vol. 126, pp. 197–206.  https://doi.org/10.1016/j.matdes.2017.04.044 CrossRefGoogle Scholar
  7. 7.
    Hulbert, D.M., Jiang, D., Dudina, D.V., and Mukherjee, A.K., The synthesis and consolidation of hard materials by spark plasma sintering, Int. J. Refract. Met. Hard Mater., 2009, vol. 27, no. 2, pp. 367–375.  https://doi.org/10.1016/j.ijrmhm.2008.09.011 CrossRefGoogle Scholar
  8. 8.
    Sudheendra, P., Surendranathan, A.O., Udayashankar, N.K., and Choudhari, K.S., Titanium–aluminium intermetallic thin films preparation by dc sputtering and their characterization, Int. J. Mech. Eng., 2012, vol. 2, no. 3, pp. 12–17.Google Scholar
  9. 9.
    Stolin, A.M. and Bazhin, P.M., SHS extrusion: An overview, Int. J. Self-Prop. High-Temp. Synth., 2014, vol. 23, no. 2, pp. 65–73.  https://doi.org/10.3103/S1061386214020113 CrossRefGoogle Scholar
  10. 10.
    Ma, C., Gu, D., Hong, C., He, B., Chang, K., and Shi, Q., Formation mechanism and microstructural and mechanical properties of in-situ Ti–Ni-based composite coatings by laser metal deposition, Surf. Coat. Technol., 2016, vol. 291, no. 1, pp. 43–53.  https://doi.org/10.1016/j.surfcoat.2016.02.013 CrossRefGoogle Scholar
  11. 11.
    Rykalin, N.N., Zuev, I.V., and Uglov, A.A., Osnovy elektronno-luchevoi obrabotki materialov (Principles of Electron Beam Treatment of Materials), Moscow: Mashinostroenie, 1978.Google Scholar
  12. 12.
    Knyazeva, A.G., Gordienko, A.I., and Pobol, I.L., Coating synthesis controlled by electron-beam heating, IOP Conf. Series: Mater. Sci. Eng., 2016, vol. 140, 012018.  https://doi.org/10.1088/1757-899X/140/1/012018 CrossRefGoogle Scholar
  13. 13.
    Shishkovsky, V., Thermal field analysis under SLS of metal–polymer powder compositions, Proc. SPIE, 2002, vol. 4, pp. 446–449.CrossRefGoogle Scholar
  14. 14.
    Sorokova, S.N. and Knyazeva, A.G., Simulation of coating phase structure formation in solid phase synthesis assisted by electron-beam treatment, Theor. Found. Chem. Eng., 2008, vol. 42, no. 4, pp. 443–451.  https://doi.org/10.1134/S0040579508040131 CrossRefGoogle Scholar
  15. 15.
    Kryukova, O., Kolesnikova, K., and Gal’chenko, N., Numerical and experimental study of electron-beam coatings with modifying particles FeB and FeTi, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 140, no. 1, 012011.  https://doi.org/10.1088/1757-899X/140/1/012011 CrossRefGoogle Scholar
  16. 16.
    Knyazeva, A.G., Pobol, I.L., Gordienko, A.I., Demidov, V.N., Kryukova, O.N., and Oleshchuk, I.G., Simulation of thermophysical and physicochemical processes occurring at coating formation in electron-beam technologies of surface modification of metallic materials, Phys. Mesomech., 2007, vol. 3, no. 10, pp. 207–220.  https://doi.org/10.1016/j.physme.2007.08.010 CrossRefGoogle Scholar
  17. 17.
    Knyazeva, A., Kinetics of powder layer shrinkage during electron-beam treatment, J. Phys.: Conf. Ser., 2016, vol. 754, 042009.  https://doi.org/10.1088/1742-6596/754/4/042009 CrossRefGoogle Scholar
  18. 18.
    Knyazeva, A.G. and Kryukova, O.N., Modeling of controlled synthesis of intermetallic coatings, J. Phys.: Conf. Ser., 2017, vol. 899, no. 7, 072001.  https://doi.org/10.1088/1742-6596/899/7/072001 CrossRefGoogle Scholar
  19. 19.
    Aldushin, A.P., Martem’yanova, T.M., Merzhanov, A.G., Khaikin, B.I., and Shkadinskii, K.G., Propagation of the front of an exothermic reaction in condensed mixtures with the interaction of the components through a layer of high-melting product, Combust. Explos. Shock Waves, 1972, vol. 8, no. 2, pp. 159–167.  https://doi.org/10.1007/BF00740444 CrossRefGoogle Scholar
  20. 20.
    Binnewies, M. and Milke, E., Thermochemical Data of Elements and Compounds, New York: Wiley–VCH, 1999.Google Scholar
  21. 21.
    Matsuura, K., Watanabe, Y., and Hirashima, Y., Use of recycled steel machining chips and aluminum can shreds for synthesizing iron aluminide intermetallic alloys, ISIJ Int., 2004, vol. 44, no. 7, pp. 1258–1262.  https://doi.org/10.2355/isijinternational.44.1258 CrossRefGoogle Scholar
  22. 22.
    Krivilyov, M.D., Mesarovic, S.D., and Sekulic, D.P., Phase–field model of interface migration and powder consolidation in additive manufacturing of metals, J. Mater. Sci., 2017, vol. 52, no. 8, pp. 4155–4163.  https://doi.org/10.1007/s10853-016-0311-z CrossRefGoogle Scholar
  23. 23.
    Krinitcyn, M., Fu, Z., Harris, J., Kostikov, K., Pribytkov, G. A., Greil, P., and Travitzky, N., Laminated object manufacturing of in-situ synthesized MAX-phase composites, Ceram. Int., 2017, vol. 43, no. 12, pp. 9241–9245.  https://doi.org/10.1016/j.ceramint.2017.04.079 CrossRefGoogle Scholar
  24. 24.
    Krinitcyn, M., Pribytkov, G., Korzhova, V., and Firsina, I., Structure and properties of composite coatings prepared by electron beam melting with ‘titanium carbide–titanium’ binder, Surf. Coat. Technol., 2019, vol. 358, pp. 706–714.  https://doi.org/10.1016/j.surfcoat.2018.12.001 CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. A. Bakinovskii
    • 1
  • A. G. Knyazeva
    • 2
    • 3
  • M. G. Krinitcyn
    • 2
    • 3
    Email author
  • O. N. Kryukova
    • 3
  • I. L. Pobol
    • 1
  • V. V. Fedorov
    • 2
  • J. Rajczyk
    • 4
  1. 1.Physicotechnical Institute, National Academy of SciencesMinskBelarus
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.Institute of Strength Physics and Materials Science, Siberian Branch, Russian Academy of SciencesTomskRussia
  4. 4.Częstochowa University of TechnologyCzęstochowaPoland

Personalised recommendations