Influence of Preheating Temperature on Solution Combustion Synthesis of Ni–NiO Nanocomposites: Mathematical Model and Experiment

  • O. Thoda
  • G. Xanthopoulou
  • V. Prokof’ev
  • S. Roslyakov
  • G. Vekinis
  • A. Chroneos


Solution combustion synthesis (SCS) is a widely recognized method to synthesize nanoscale materials. In this work, an attempt was made to analytically simulate (using the Semenov method) and evaluate the influence of preheating temperature on flame temperature as well as on physicochemical characteristics of SCS products. Preheating was found to affect combustion temperature only slightly. An increase in preheating temperature led to a decrease in the induction period due to enhanced heating rate and an increase in cooling time as a result of additional exothermic reactions taking place at higher temperatures. Variation in cooling time caused changes in composition and microstructure of product. For the first time, a mathematical model of SCS was suggested.


SHS solution combustion synthesis Ni–NiO nanocomposites preheating temperature modelling reaction mechanism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aruna, S.T. and Rajam, K.S., Mixture of fuels approach for the solution combustion synthesis of Al2O3–ZrO2 nanocomposite, Mater. Res. Bull., 2004, vol. 39, no. 2, pp. 157–167. doi 10.1016/j.materresbull. 2003.10.005CrossRefGoogle Scholar
  2. 2.
    Alves, A., Bergmann, C.P., and Berutti, F.A., Novel Synthesis and Characterization of Nanostructured Materials: Engineering Materials, Berlin–Heidelberg: Springer, 2013, pp. 15–16.CrossRefGoogle Scholar
  3. 3.
    González-Cortés, S.L. and Imbert, F.E., Fundamentals, properties and applications of solid catalysts prepared by solution combustion synthesis (SCS), Appl. Catal. B, 2013, vol. 452, pp. 117–131. doi 10.1016/j.apcata.2012.11.024CrossRefGoogle Scholar
  4. 4.
    Mukasyan, A.S. and Dinka, P., Novel approaches to solution-combustion synthesis of nanomaterials, Int. J. Self-Propag. High-Temp Synth., 2007, vol. 16, no. 1, pp. 23–35. doi 10.3103/S1061386207010049CrossRefGoogle Scholar
  5. 5.
    Varma, A., Mukasyan, A.S., Deshpande, K., Pranda, P., and Erri, P., Combustion synthesis of nanoscale oxide powders: Mechanism, characterization, and properties, Mater. Res. Soc. Symp. Proc., 2003, vol. 800, p. 113. doi 10.1557/PROC-800-AA4.1CrossRefGoogle Scholar
  6. 6.
    Aruna, S. T. and Mukasyan, A.S., Combustion synthesis and nanomaterials, Curr. Opin. Solid State Mater. Sci., 2008, vol. 12, nos. 3–4, pp. 44–50. doi 10.1016/j.cossms.2008.12.002CrossRefGoogle Scholar
  7. 7.
    Deshpande, K., Mukasyan, A.S., and Varma, A., Direct synthesis of iron oxide nanopowders by combustion approach: Reaction mechanism and properties, Chem. Mater., 2004, vol. 16, no. 24, pp. 4896–4904. doi 10.1021/cm040061mCrossRefGoogle Scholar
  8. 8.
    Cross, A., Roslyakov, S., Manukyan, K.V., Rouvimov, S., Rogachev, A.S., Kovalev, D., Wolf, E.E., and Mukasyan, A.S., In situ preparation of highly stable Nibased supported catalysts by solution combustion synthesis, J. Phys. Chem. C, 2014, vol. 118, no. 45, pp. 26191–26198. doi 10.1021/jp508546nCrossRefGoogle Scholar
  9. 9.
    Wen, W. and Wu, J.-M., Nanomaterials via solution combustion synthesis: A step nearer to controllability, RSC Adv., 2014, vol. 4, no. 101, pp. 58090–58100. doi 10.1039/C4RA10145FCrossRefGoogle Scholar
  10. 10.
    Patil, K.C., Hegde, M.S., Yanu R., and Aruna, S.T., Chemistry of Nanocrystalline Oxide Materials: Combustion Synthesis, Properties and Applications, Singapore: World Scientific, 2008, ch.3.CrossRefGoogle Scholar
  11. 11.
    Lackner, M., Combustion Synthesis: Novel Routes to Novel Materials, Vienna: Betham, 2010, ch.16.Google Scholar
  12. 12.
    Xanthopoulou, G., Thoda, O., Metaxa, E.D., Vekinis, G., and Chroneos, A., Influence of atomic structure on the nanonickel-based catalysts activity produced by solution combustion synthesis in the hydrogenation of maleic acid, J. Catal., 2017, vol. 348, pp. 9–21. doi 10.1016/j.jcat.2016.12.002CrossRefGoogle Scholar
  13. 13.
    Thoda, O., Xanthopoulou, G., Vekinis, G., and Chroneos, A., Parametric optimization of solution combustion synthesis catalysts and their application for the aqueous hydrogenation of maleic acid, Catal. Lett., 2018, vol. 148, no. 2, pp. 764–778. doi 10.1007/s10562-017-2279-yCrossRefGoogle Scholar
  14. 14.
    Jiang, Y., Yang, S., Hua, Z., and Huang, H., Sol–gel autocombustion synthesis of metals and metal alloys, Angew. Chem. Int. Ed., 2009, vol. 121, no. 45, pp. 8681–8683. doi 10.1002/ange.200903444CrossRefGoogle Scholar
  15. 15.
    Varma, A., Mukasyan, A.S., Rogachev, A.S., and Manukyan, K.V., Solution combustion synthesis of nanoscale materials, Chem. Rev., 2016, vol. 116, no. 23, pp. 4493–14586. doi doi 10.1021/acs.chemrev.6b00279CrossRefGoogle Scholar
  16. 16.
    Roth, P., Particle synthesis in flames, Proc. Combust. Inst., 2007, vol. 31, no. 2, pp. 1773–1788. doi 10.1016/j.proci.2006.08.118CrossRefGoogle Scholar
  17. 17.
    Kumar, A., Wolf, E.E., and Mukasyan, A.S., Solution combustion synthesis of metal nanopowders: Nickel— Reaction pathways, AIChE J., 2011, vol. 57, no. 8, pp. 2207–2214. doi 10.1002/aic.12416CrossRefGoogle Scholar
  18. 18.
    Khaliullin, Sh.M., Zhuravlev, V.D., and Bamburov, V.G., Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects, Int. J. Self-Propag. High-Temp Synth., 2016, vol. 25, no. 3, pp. 139–148. doi 10.3103/S1061386216030031CrossRefGoogle Scholar
  19. 19.
    Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, no. 2, pp. 1789–1795. doi 10.1016/j.proci.2006.07.052CrossRefGoogle Scholar
  20. 20.
    Heinrich, P., Course of Inorganic Chemistry, Leipzig: Akademische Verlagsgesellschaft, 1961, vol.2.Google Scholar
  21. 21.
    Zoubovich, I.A., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Nauka, 1989.Google Scholar
  22. 22.
    Semenov, N.N., Some Problems in Chemical Kinetics and Reactivity, London: Pergamon Press, 1958, vol. 1, pp.128–145.CrossRefGoogle Scholar
  23. 23.
    Prokof’ev, V.G. and Smolyakov, V.K., Unsteady combustion regimes of gasless systems with a low-melting inert component, Combust. Explos. Shock Waves, 2002, vol. 38, no. 2, pp. 143–147.CrossRefGoogle Scholar
  24. 24.
    Merzhanov, A.G. and Khaikin, B.I., Theory of combustion waves in homogeneous media, Prog. Energy Combust. Sci., 1988, vol. 14, no. 1, pp. 1–98. doi 10.1016/0360-1285(88)90006-8CrossRefGoogle Scholar
  25. 25.
    Ripan, R.N. and Chetyanou, I., Neorganicheskaya khimiya (Inorganic Chemistry), Moscow: Mir, 1972, vol.2.Google Scholar
  26. 26.
    Shea, L.E., McKittrick, J., and Lopez, O.A., Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process, J. Am. Chem. Soc., 1996, vol. 79, no. 12, pp. 3257–3265. doi 10.1111/j.1151-2916.1996.tb08103.xGoogle Scholar
  27. 27.
    Sing, K.S.W., Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity, Pure Appl. Chem., 1982, vol. 54, no. 11, pp. 2201–2218. doi 10.1351/pac198254112201CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • O. Thoda
    • 1
    • 2
  • G. Xanthopoulou
    • 1
    • 3
  • V. Prokof’ev
    • 4
  • S. Roslyakov
    • 5
  • G. Vekinis
    • 1
  • A. Chroneos
    • 2
  1. 1.Institute of Nanoscience and NanotechnologyNCSR DemokritosAgia Paraskevi AttikisGreece
  2. 2.Faculty of Engineering, Environment and ComputingCoventry UniversityLondonUnited Kingdom
  3. 3.Samara National Research UniversitySamaraRussia
  4. 4.Tomsk State UniversityTomskRussia
  5. 5.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations