Advertisement

Mesoporous Silica by Solution-Combustion Synthesis Followed by Etching

  • F. Salehtash
  • M. JalalyEmail author
  • H. B. Motejadded Emrooz
  • F. J. Gotor
  • M. J. Sayagués
Article
  • 11 Downloads

Abstract

Mesoporous silica was synthesized through the solution-combustion process followed by etching with aqueous solution of sodium dodecyl sulfate (SDS). Combustion products were characterized by XRD, FTIR, SEM, TEM, HRTEM, and BET analysis. After etching, the specific surface, mean pore size, and volume of porous space in silica increased up to 390 m2/g, 15 nm, and 1.6 cm3/g, respectively. The synthesized mesoporous silica exhibited good performance in the tests on elimination of methylene blue from aqueous solution.

Keywords

solution-combustion synthesis etching mesoporous silica adsorption methylene blue 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tang, F., Li, L. and Chen, D., Mesoporous silica nanoparticles: Synthesis, biocompatibility, and drug delivery, Adv. Mater., 2012, vol. 24, no. 12, pp. 1504–1534. doi 10.1002/adma.201104763Google Scholar
  2. 2.
    Ying, J.Y., Mehnert, C.P., and Wong, M.S., Synthesis and applications of supramolecular-templated mesoporous materials, Angew. Chem. Int. Ed., 1999, vol. 38, nos. 1–2, pp. 56–77. doi 10.1002/(SICI)1521-3773(19990115)38:1/2<56::AID-ANIE56>3.0.CO;2-ECrossRefGoogle Scholar
  3. 3.
    Hoffmann, F., Cornelius, M., Morell, J., and Fröba, M., Silica-based mesoporous organic–inorganic hybrid materials, Angew. Chem. Int. Ed., 2006, vol. 45, no. 20, pp. 3216–3251. doi 10.1002/anie.200503075CrossRefGoogle Scholar
  4. 4.
    Du, X. and He, J., Spherical silica micro/nanomaterials with hierarchical structures: Synthesis and applications, Nanoscale, 2011, vol. 3, no. 10, pp. 3984–4002. doi 10.1039/C1NR10660KCrossRefGoogle Scholar
  5. 5.
    Galan-Fereres, M., Alemany, L.J., Mariscal, R., Banares, M.A., Anderson J.A. and Fierro, J.L.G., Surface acidity and properties of titania-silica catalysts, Chem. Mater., 1995, vol. 7, no. 7, pp. 1342–1348. doi 10.1021/cm00055a011CrossRefGoogle Scholar
  6. 6.
    Hertz, A., Fitzgerald, V., Pignotti, E., Knowles, J.C., Sen, T. and Bruce, I.J., Preparation and characterization of porous silica and silica/titania monoliths for potential use in bone replacement, Micropor. Mesopor. Mater., 2012, vol. 156, no. 1, pp. 51–61. doi 10.1016/j.micromeso.2012.02.004CrossRefGoogle Scholar
  7. 7.
    Smith, G.M., Enzyme immobilization and catalysis in ordered mesoporous silica, PhD Thesis, University of St Andrews, 2008.Google Scholar
  8. 8.
    Treccani, L., Klein, T.Y., Meder, F., Pardun, K., and Rezwan, K., Functionalized ceramics for biomedical, biotechnological, and environmental applications, Acta Biomater., 2013, vol. 9, no. 7, pp. 7115–7150. doi 10.1016/j.actbio.2013.03.036CrossRefGoogle Scholar
  9. 9.
    Polshettiwar, V., Cha, D., Zhang, X., and Basset, J.M., High-surface-area silica nanospheres (KCC-1) with a fibrous morphology, Angew. Chem. Int. Ed., 2010, vol. 49, no. 50, pp. 9846–9850. doi 10.1002/anie.201003451CrossRefGoogle Scholar
  10. 10.
    Pavan, F.A., Mazzocato, A.C. and Gushikem, Y., Removal of methylene blue dye from aqueous solutions by adsorption using yellow passion fruit peel as adsorbent, Bioresour. Technol., 2008, vol. 99, no. 8, pp. 3162–3165. doi 10.1016/j.biortech.2007.05.067CrossRefGoogle Scholar
  11. 11.
    Geçgel, U., Özcan, G., and Gürpinar, G.Ç., Removal of methylene blue from aqueous solution by activated carbon prepared from pea shells (Pisum sativum), J. Chem., 2013, vol. 2013, article ID 614083. doi 10.1155/2013/614083Google Scholar
  12. 12.
    Kassab, H., Maksoud, M., Aguado, S., Pera-Titus, M., Albela, B., and Bonneviot, L., Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture, RSC Adv., 2012, vol. 2, no. 6, pp. 2508–2516. doi 10.1039/C2RA01007KCrossRefGoogle Scholar
  13. 13.
    Yi, D.K., Lee, S.S., Papaefthymiou, G.C., and Ying J.Y., Nanoparticle architectures templated by SiO2/Fe2O3 nanocomposites, Chem. Mater., 2006, vol. 18, no. 3, pp. 614–619. doi 10.1021/cm0512979CrossRefGoogle Scholar
  14. 14.
    Zhang, Q., Ge, J., Goebl, J., Hu, Y., Lu, Z. and Yin Y., Rattle-type silica colloidal particles prepared by a surface-protected etching process, Nano Res., 2009, vol. 2, no. 7, pp. 583–591. doi 10.1007/s12274-009-9060-5CrossRefGoogle Scholar
  15. 15.
    Huang, C.C., Huang, W., and Yeh, C.S., Shell-by-shell synthesis of multi-shelled mesoporous silica nanospheres for optical imaging and drug delivery, Biomaterals, 2011, vol. 32, no. 2, pp. 556–564. doi 10.1016/j.biomaterials.2010.08.114CrossRefGoogle Scholar
  16. 16.
    Chen, D., Li, L., Tang, F., and Qi S., Facile and scalable synthesis of tailored silica ‘nanorattle’ structures, Adv. Mater., 2009, vol. 21, no. 37, pp. 3804–3807. doi 10.1002/adma.200900599CrossRefGoogle Scholar
  17. 17.
    Chen, Y., Chen, H.R. and Shi, J.L., Construction of homogenous/heterogeneous hollow mesoporous silica nanostructures by silica-etching chemistry: Principles, synthesis, and applications, Acc. Chem. Res., 2013, vol. 47, no. 1, pp. 125–137. doi 10.1021/ar400091eCrossRefGoogle Scholar
  18. 18.
    Chen, Y., Xu, P., Chen, H., Li, Y., Bu, W., Shu, Z., Li, Y., Zhang, J., Zhang, L., and Pan, L., Colloidal HPMO nanoparticles: Silica-etching chemistry tailoring, topological transformation, and nano-biomedical applications, Adv. Mater., 2013, vol. 25, no. 22, pp. 3100–3105. doi 10.1002/adma.201204685CrossRefGoogle Scholar
  19. 19.
    Zhang, Q., Zhang, T., Ge, J., and Yin, Y., Permeable silica shell through surface-protected etching, Nano Lett., 2008, vol. 8, no. 9, pp. 2867–2871. doi 10.1021/nl8016187CrossRefGoogle Scholar
  20. 20.
    Zhang, T., Ge, J., Hu, Y., Zhang, Q., Aloni, S., and Yin, Y., Formation of hollow silica colloids through a spontaneous dissolution–regrowth process, Angew. Chem. Int. Ed., 2008, vol. 47, no. 31, pp. 5890–5895. doi 10.1002/anie.200800927CrossRefGoogle Scholar
  21. 21.
    Lee, Y.S., Jang, W., Koo, H.Y., and Choi W.S., Facile synthesis of mesoporous SiO2 nanoparticles using the mobility differences of etchants, RSC Adv., 2015, vol. 5, no. 33, pp. 26223–26230. doi 10.1039/C5RA01154JCrossRefGoogle Scholar
  22. 22.
    Mawhinney, D.B., Glass, J.A. and Yates, J.T., FTIR study of the oxidation of porous silicon, J. Phys. Chem. B, 1997, vol. 101, no. 7, pp. 1202–1206. doi 10.1021/jp963322rCrossRefGoogle Scholar
  23. 23.
    Wang, S., Wang, D.K., Smart, S., and Diniz da Costa, J.C., Ternary phase-separation investigation of sol–gel derived silica from ethyl silicate 40, Sci. Rep., 2015, vol. 5, 14560, pp. 1–11. doi 10.1038/srep14560Google Scholar
  24. 24.
    Dashnyam, K., Perez, R.A., Singh, R.K., Lee, E., and Kim, H., Hybrid magnetic scaffolds of gelatin–siloxane incorporated with magnetite nanoparticles effective for bone tissue engineering, RSC Adv., 2014, vol. 4, no. 7, pp. 40841–40851. doi 10.1039/C4RA06621ACrossRefGoogle Scholar
  25. 25.
    Hong, H., Churchman, G.J., Yin, K., Li, R., and Li, Z., Randomly interstratified illite–vermiculite from weathering of illite in red earth sediments in Xuancheng southeastern China, Geoderma, 2014, vol. 214–215, pp. 42–49. doi 10.1016/j.geoderma.2013.10.004CrossRefGoogle Scholar
  26. 26.
    Lowell, S., Shields, J.L., Thomas, M.A. and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size, and Density, New York: Springer, 2004.CrossRefGoogle Scholar
  27. 27.
    Barrett, E.P., Joyner, L.G., and Halenda, P.P., The determination of pore volume and area distributions in porous substances: I. Computations from nitrogen isotherms, J. Am. Chem. Soc., 1951, vol. 73, no. 1, pp. 373–380. doi 10.1021/ja01145a126CrossRefGoogle Scholar
  28. 28.
    Langmuir, I., The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc., 1916, vol. 38, no. 11, pp. 2221–2295. doi 10.1021/ja02268a002CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • F. Salehtash
    • 1
  • M. Jalaly
    • 1
    Email author
  • H. B. Motejadded Emrooz
    • 1
  • F. J. Gotor
    • 2
  • M. J. Sayagués
    • 2
  1. 1.Nanotechnology Department, School of New TechnologiesIran University of Science and Technology (IUST)Narmak, TehranIran
  2. 2.Instituto de Ciencia de Materiales de Sevilla (CSIC-US)SevillaSpain

Personalised recommendations