Advertisement

SHS-Produced Al–Ti–B Master Alloys: Performance in Commercial Al Alloy

  • H. Pourbagheri
  • H. AghajaniEmail author
Article
  • 15 Downloads

Abstract

Al–Ti–B master alloys (MAs) were SHS-produced from the elements taken in the amounts that would ensure the preparation of final combustion products (MAs) containing about 20, 25, and 30 mol % TiB2. Combustion products and the samples of commercial Al alloy doped with 0.2 wt % combustion-synthesized MAs were characterized by optical microscopy, XRD, SEM, and EDS. The effect of added MAs was explored by optical microscopy using Clemex Vision software to determine the ASTM grain size number (G) and percentage of intermetallic compounds in doped Al alloys. A higher microhardness (97.64 HV 0.05) was observed for the Al specimens doped with MA nominally containing 25 mol % TiB2.

Keywords

SHS Al–Ti–B master alloy aluminum alloy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kori, S.A., Murty, B.S., and Chakraborty, M., Development of an efficient grain refiner for Al–7Si alloy, Mater. Sci. Eng. A, 2000, vol. 280, no. 1, pp. 58–61. doi 10.1016/S0921509399006565CrossRefGoogle Scholar
  2. 2.
    Davis, J.R., Aluminum and aluminum alloys, in Alloying: Understanding the Basics, ASM International, 2001, pp. 351–416. doi 10.1361/autb2001p351Google Scholar
  3. 3.
    Kori, S.A., Murty, B.S., and Chakraborty, M., Development of an efficient grain refiner for Al–7Si alloy and its modification with strontium, Mater. Sci. Eng. A, 2000, vol. 283, nos. 1–2, pp. 94–104. doi 10.1016/S0921509399007947CrossRefGoogle Scholar
  4. 4.
    Kashayp, K.T. and Chandrashekar, T., Effects and mechanisms of grain refinement in aluminum alloys, Bull. Mater. Sci., 2001, vol. 24, no. 4, pp. 345–353. doi 10.1007/BF02708630CrossRefGoogle Scholar
  5. 5.
    Eldesouky, A., Johnsson, M., Svengren, H., Attallah, M.M., and Salem, H.G., Effect of grain size reduction of AA2124 aluminum alloy powder compacted by spark plasma sintering, J. Alloys Comp., 2014, vol. 609, no. 2, pp. 215–221. doi 10.1016/j.jallcom. 2014.04.136CrossRefGoogle Scholar
  6. 6.
    Lobry, P., Blaz, L., Sugamata, M., and Kula, A., Effect of rapid solidification on structure and mechanical properties of Al–6Mn–3Mg alloy, Arch. Mater. Sci. Eng., 2011, vol. 49, no. 2, pp. 97–102.Google Scholar
  7. 7.
    Eskin, G.I. and Eskin, D.G., Ultrasonic processing of aluminum alloys for grain refining, Proc. 12th Int. Conf. on Aluminum Alloys, 2010, pp. 638–645.Google Scholar
  8. 8.
    Liu, S., Cui, C., Wang, X., Li, N., Shi, J., Cui, S., and Chen, P., Effect of cooling rate on microstructure and grain refining behavior of in situ CeB6/Al composite inoculant in aluminum, Metals, 2017, vol. 7, no. 204, pp. 1–10. doi 10.3390/met7060204Google Scholar
  9. 9.
    Changizi, A., Kalkanli, A., and Sevinc, N., Production of in situ aluminum–titanium diboride master alloy formed by slag–metal reaction, J. Alloys Comp., 2011, vol. 509, no. 2, pp. 237–240. doi 10.1016/j.jallcom. 2010.08.089CrossRefGoogle Scholar
  10. 10.
    Li, H., Sritharan, T., Lam, Y.M., and Leng, N.Y., Effect of processing parameters on the performance of Al grain refinement master alloy Al–Ti and Al–B in small ingots, J. Mater. Process. Technol., 1997, vol. 66, nos. 1–3, pp. 253–257. doi 10.1016/S0924013696025368CrossRefGoogle Scholar
  11. 11.
    Lee, Y.C., Dahle, A.K., St. John, D.H., and Hutt, J.E.C., The effect of grain refinement and silicon content on grain formation in hypoeutectic Al–Si alloys, Mater. Sci. Eng. A, 1999, vol. 259, no. 1, pp. 43–52. doi 10.1016/S0921509398008843CrossRefGoogle Scholar
  12. 12.
    Birol, Y., Production of Al–Ti–B grain refining master alloys from B2O3 and K2TiF6, J. Alloys Comp., 2007, vol. 443, nos. 1–2, pp. 94–98. doi 10.1016/j.jallcom. 2006.10.009CrossRefGoogle Scholar
  13. 13.
    Murty, B.S., Kori, S.A., Venkateswarlu, K., Bhat, R.R., and Chakraborty, M., Manufacture of Al–Ti–B master alloys by the reaction of complex halide salts with molten aluminum, J. Mater. Process. Technol., 1999, vols. 89–90, pp. 152–158. doi 10.1016/S0924013699001351CrossRefGoogle Scholar
  14. 14.
    Birol, Y., A novel Al–Ti–B alloy for grain refining Al–Si foundry alloys, J. Alloys Comp., 2009, vol. 486, no. 1, pp. 219–222. doi 10.1016/j.jallcom.2009.07.064CrossRefGoogle Scholar
  15. 15.
    Birol, Y., Production of Al–Ti–B grain refining master alloys from Na2B4O7 and K2TiF6, J. Alloys Comp., 2008, vol. 458, nos. 1–2, pp. 271–276. doi 10.1016/j.jallcom. 2007.04.036CrossRefGoogle Scholar
  16. 16.
    Vicario, I., Poulon-Quintin, A., Lagos, M.A., and Silvain, J.-F., Effect of material and process atmosphere in the preparation of Al–Ti–B grain refiner by SHS, Metals, 2015, vol. 5, no. 3, pp. 1387–1396. doi 10.3390/met5031387CrossRefGoogle Scholar
  17. 17.
    Mohanty, P.S. and Gruzleski, J.E., Mechanism of grain refinement in aluminum, Acta Metall. Mater., 1995, vol. 43, no. 5, pp. 2001–2012. doi 10.1016/0956-7151(94)00405-7CrossRefGoogle Scholar
  18. 18.
    Alamdari, H.D., Dube, D., and Tessier, P., Behavior of boron in molten aluminum and its grain refinement mechanism, Metall. Mater. Trans. A, 2013, vol. 44, no. 1, pp. 388–394. doi 10.1007/s116610121388xCrossRefGoogle Scholar
  19. 19.
    Birol, Y., The effect of holding conditions in the conventional halide salt process on the performance of Al–Ti–B grain refiner alloys, J. Alloys Comp., 2007, vol. 427, no. 1, pp. 142–147. doi 10.1016/j.jallcom. 2006.03.002CrossRefGoogle Scholar
  20. 20.
    Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226. doi 10.1016/S0065237708600939CrossRefGoogle Scholar
  21. 21.
    Radev, D.D. and Klissurski, D., Mechanochemical synthesis and SHS of diborides of titanium and zirconium, J. Mater. Synth. Process., 2001, vol. 9, no. 3, pp. 131–136. doi 10.1023/A:1013245413840CrossRefGoogle Scholar
  22. 22.
    Javaherian, Sh.Sh., Aghajani, H., and Mehdizadeh, P., Cu–TiO2 composite as fabricated by SHS method, Int. J. Self-Propag. High-Temp. Synth., 2014, vol. 23, no. 1, pp. 47–54. doi 10.3103/S1061386214010051CrossRefGoogle Scholar
  23. 23.
    Adeli, M., Seyedeina, S.H., Aboutalebi, M.R., Kobashi, M., and Kanetakeb, N., A study on the combustion synthesis of titanium aluminide in the selfpropagating mode, J. Alloys Comp., 2010, vol. 497, nos. 1–2, pp. 100–104. doi 10.1016/j.jallcom. 2010.03.05CrossRefGoogle Scholar
  24. 24.
    Wang, H.Y., Jiang, Q.C., Zhao, Y.Q., Zhao, F., Ma, B.X., and Wang, Y., Fabrication of TiB2 and TiB2–TiC particulates reinforced magnesium matrix composites, Mater. Sci. Eng. A, 2004, vol. 372, nos. 1–2, pp. 109–114. doi 10.1016/j.msea.2003.10.250CrossRefGoogle Scholar
  25. 25.
    Kwon, Y.-J., Kobashi, M., Choh, T., and Kanetake, N., Fabrication of TiB2/Al composite by combustion synthesis in Al–Ti–B system, Mater. Trans., 2002, vol. 43, no. 11, pp. 2796–2801. doi doi 10.2320/matertrans. 43.2796CrossRefGoogle Scholar
  26. 26.
    Chiu, L.H., Nagle, D.C., and Bonney, L.A., Thermal analysis of self-propagating high-temperature reactions in titanium, boron, and aluminum powder compacts, Metall. Mater. Trans. A, 1999, vol. 30, no. 13, pp. 781–788. doi 10.1007/s116619991010zCrossRefGoogle Scholar
  27. 27.
    Standard practice for microetching metals and alloys, Designation: E407–07, ASTM International, 2007, pp. 1–23.Google Scholar
  28. 28.
    Hu, W., Liu, W., Liu, Y., Wang, H., and Zheng, Z., Calculation of adiabatic temperature through computer program in process of combustion synthesis, Trans. Non-Ferr. Metall. Soc. China, 1993, vol. 3, no. 4, pp. 56–59.Google Scholar
  29. 29.
    Kevorkijan, V. and Škapin, S.D., Fabrication and characterization of TiAl/Ti3Al based (IMSC) reinforced with ceramic particles, Assoc. Metall. Eng. Serbia, 2009, vol. 15, no. 2, pp. 75–89. 10.1.1.610.3125Google Scholar
  30. 30.
    Yeh, C.L. and Su, S.H., In situ formation of TiAl–TiB2 composite by SHS, J. Alloys Comp., 2006, vol. 407, nos.1–2, pp. 150–156. doi 10.1016/j.jallcom.2005.06.053CrossRefGoogle Scholar
  31. 31.
    Niu, H.Z., Xiao, S.L., Kong, F.T., Zhang, C.J., and Chen, Y.Y., Microstructure characterization and mechanical properties of TiB2/TiAl in situ composite by induction skull melting process, Mater. Sci. Eng. A, 2012, vol. 532, pp. 522–527. doi 10.1016/j.msea.2011.11.017Google Scholar
  32. 32.
    Taylor, J.A., The effect of iron in Al–Si casting alloys, 35th Australian Foundry Institute National Conference, 2004.Google Scholar
  33. 33.
    Tash, M.M. and Mahmoud, E.R.I., Development of in-situ Al–Si/CuAl2 metal matrix composites: Microstructure, hardness, and wear behavior, Materials, 2016, vol. 9, no. 442, pp. 1–15. doi 10.3390/ma9060442Google Scholar
  34. 34.
    Standard test methods for determining average grain size, Designation: E 112—ASTM International, 1996, pp. 1–26.Google Scholar
  35. 35.
    Gan, G., Bin, Y., Bo, Z., Xin, J., Shi, Y., and Wu, Y., Refining mechanism of 7075 Al alloy by in-situ TiB2 particles, Materials, 2017, vol. 10, no. 132, pp. 1–11. doi 10.3390/ma10020132Google Scholar
  36. 36.
    Ghadimi, H., Hossein, N.S., and Eghbali, B., Enhanced grain refinement of cast aluminum alloy by thermal and mechanical treatment of Al-5Ti-B master alloy, Trans. Non-Ferr. Met. Soc. China, 2013, vol. 23, pp. 1563–1569. doi 10.1016/S100363261362631XCrossRefGoogle Scholar
  37. 37.
    Shabestari, S.G. and Moemeni, H., Effect of copper and solidification conditions on the microstructure and mechanical properties of Al–Si–Mg alloys, J. Mater. Process. Technol., 2004, vol. 153–154, no. 1, pp. 193–198. doi 10.1016/j.jmatprotec.2004.04.302CrossRefGoogle Scholar
  38. 38.
    Seifeddine, S., Sjölander, E., and Bogdanoff, T., On the role of copper and cooling rates on the microstructure, defects formation, and mechanical properties of Al–Si–Mg alloys, Mater. Sci. Appl., 2013, vol. 4, no. 3, pp. 171–178. doi 10.4236/msa.2013.43020Google Scholar
  39. 39.
    Shehadeh, L.M. and Jalham, I.S., The effect of adding different percentages of manganese (Mn) and copper (Cu) on the mechanical behavior of aluminum, Jordan J. Mech. Ind. Eng., 2016, vol. 10, no. 1, pp. 19–26.Google Scholar
  40. 40.
    Kalhapure, M.G. and Dighe, P.M., Impact of silicon content on mechanical properties of aluminum alloys, Int. J. Sci. Res., 2015, vol. 4, no. 6, pp. 38–40.Google Scholar
  41. 41.
    Belov, N.A., Aksenov, A.A., and Eskin, D.G., Iron in aluminum alloys: Impurity and alloying element, in Advances in Metallic Alloys, CRC Press, 2002, vol. 2, pp. 99–100.Google Scholar
  42. 42.
    Zainon, F., Ahmad, K.R., and Daud, R., Effect of intermetallic phase on microstructure and mechanical properties of AA332/Mg2Si(p) composite, AIP Conf. Proc., 2017, vol. 1835, no. 1, 020043. doi 10.1063/1.4981865CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Materials Engineering DepartmentUniversity of TabrizTabrizIran

Personalised recommendations