Thermal Explosion in Mechanochemically Treated Mixtures of Natural Sand with Aluminum Powder

  • Z. A. Mansurov
  • N. N. MofaEmail author
  • B. S. Sadykov


The influence of mechanochemical treatment (MCT) on thermal explosion in compacted blends of natural sand with Al powder subjected to MCT under varied conditions in the presence/absence of modifying agents—graphite and polyvinyl alcohol—was explored. MCT in the presence of modifiers was found to markedly increase a maximum temperature of thermal explosion, to shorten the induction period, and to stabilize the combustion process. Under optimized conditions, the extent of Al consumption attained a value of 96.9%.


SHS thermal explosion mechanochemical treatment mechanical activation natural sand aluminum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mansurov, Z.A., Mofa, N.N., Sadykov, B. S., and Shabanova, T.A., Activation of the technological combustion process of oxide systems by different modifying additives, Adv. Ceram. Sci. Eng., 2013, vol. 2, no. 3, pp. 106–112. Google Scholar
  2. 2.
    Mansurov, Z.A., Mofa, N.N., Sadykov, B.S., and Antonyuk, V.I., Mechanochemical treatment, structure, properties, and reactivity of SHS systems based on natural materials: 3. Influence of mechanochemical treatment and modification on technological combustion, J. Eng. Phys. Thermophys., 2014, vol. 87, no. 5, pp. 1094–1102. doi 10.1007/s10891-014-1111-4CrossRefGoogle Scholar
  3. 3.
    Mansurov, Z.A., Mofa, N.N., Sadykov, B.S., and Sabaev, Zh.Zh., SHS production of heat-shield materials from minerals and residual products: Influence of preliminary mechanochemical treatment and modifying agents, Int. J. Self-Propag. High-Temp. Synth., 2016, vol. 25, no. 3, pp. 166–172. doi 10.3103/S1061386216030080CrossRefGoogle Scholar
  4. 4.
    Selyutin, A.G., Shmakov, A.N., Kuznetsov, V.L., Moseenkov, S.I., Dudina, D.V., and Lomovsky, O.I., Characterization of aluminum–carbon composites obtained via mechanical activation of aluminum and carbon nanotubes, Bull. Russ. Acad. Sci. Phys., 2013, vol. 77, no. 2, pp. 162–165. doi 10.3103/S1062873813020329CrossRefGoogle Scholar
  5. 5.
    Streletskii, A.N., Kolbanev, I.V., Borunova, A.V., Leonov, A.V., and Butyagin, P.Yu., Mechanochemical activation of aluminum: 1. Joint grinding of aluminum and graphite, Colloid J., 2004, vol. 66, no. 6, pp. 729–735. doi 10.1007/s10595-005-0015-6CrossRefGoogle Scholar
  6. 6.
    Streletskii, A.N., Povstugar, I.V., Lomaeva, S.F., and Butyagin, P.Yu., Mechanochemical activation of aluminum: 4. Kinetics of mechanochemical synthesis of aluminum carbide, Colloid J., 2006, vol. 68, no. 4, pp. 470–480. doi 10.1134/S1061933X06040119CrossRefGoogle Scholar
  7. 7.
    Ketegenov, T.A. and Urakaev, F.Kh., Combustion of mechanically activated quartz–aluminum mixtures, Int. J. Self-Propag. High-Temp. Synth., 2010, vol. 19, no. 2, pp. 133–140. doi 10.3103/S1061386210020093CrossRefGoogle Scholar
  8. 8.
    Zhu, H., Dong, K., Huang, J., Li, J., Wang, G., and Xie, Z., Reaction mechanism and mechanical properties of an aluminum-based composite fabricated in-situ from Al–SiO2 system, Mater. Chem. Phys., 2014, vol. 145, no. 3, pp. 334–341. doi 10.1016/j.matchemphys.2014.02.020CrossRefGoogle Scholar
  9. 9.
    Karpov, A.V., Vadchenko, S.G., Shchukin, A.S., and Sychev, A.E., Particularities of interphase interaction in composite ceramics based on the system Al–SiO2 in the process of self-propagating high-temperature synthesis (SHS), Glass Ceram., 2017, vol. 73, nos. 9–10, pp. 323–327. doi 10.1007/s10717-017-9882-7CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Combustion ProblemsAlmatyKazakhstan
  2. 2.Al-Farabi National UniversityAlmatyKazakhstan

Personalised recommendations