Advertisement

Fabrication of Narrow-Fraction Micropowders of NiAl-Based Refractory Alloy CompoNiAl-M5-3

  • V. V. KurbatkinaEmail author
  • E. I. Patsera
  • E. A. Levashov
  • Yu. Yu. Kaplanskii
  • A. V. Samokhin
Article
  • 14 Downloads

Abstract

Powders of new CompoNiAl M5-3 heat-resistant alloy were prepared by mechanoactivated SHS from (Ni–Al–Cr–Co–Hf)–NaCl mixtures. Ni dissolution in Al melt was found to be the motive force of combustion. Unlike the binary Ni–Al system, NiAl is formed not in the melt but in the post-combustion zone as a result of diffusion-controlled processes. Conditions for MASHS were optimized toward fabrication of a superalloy with homogeneous composition/structure and low content of gas impurities. As-prepared combustion product was disintegrated into a powder and the latter was subjected to plasma spheroidization, keeping in mind the needs of additive manufacturing. The attained degree of spheroidization was 98%. The structure and phase/chemical compositions of spherical powders did not differ from those of the synthesized powders. After plasma treatment, the content of gas impurities (О2 and N2) decreased.

Keywords

SHS MASHS mechanical activation nickel aluminide spheroidization additive manufacturing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Quian, M., Metal powder for additive manufacturing, JOM, 2015, vol. 67, no. 3, pp. 536–537. doi 10.1007/s11837-015-1321-zCrossRefGoogle Scholar
  2. 2.
    Gu, D.D., Meiners, W., Wissenbach, K., and Poprawe, R., Laser additive manufacturing of metallic components: Materials, processes and mechanisms, Int. Mater. Rev., 2012, vol. 57, no. 3, pp. 133–164. doi 10.1179/1743280411Y.0000000014CrossRefGoogle Scholar
  3. 3.
    DebRoy, T., Wei, H.L., Zuback, J.S., Mukherjee, T., Elmer, J.W., Milewski, J.O., Beese, A.M., Wilson-Heid, A., De, A., and Zhang, W., Additive manufacturing of metallic components: Process, structure and properties, Prog. Mater. Sci., 2018, vol. 92, pp. 112–224. doi 10.1016/j.pmatsci.2017.10.001CrossRefGoogle Scholar
  4. 4.
    Liu, E., Jia, J., Bai, Y., Wang, W., and Gao, Y., Study on preparation and mechanical property of nanocrystalline NiAl intermetallic, Mater. Des., 2014, vol. 53, pp. 596–601. doi 10.1016/j.matdes.2013.07.052CrossRefGoogle Scholar
  5. 5.
    Liang, Y., Guo, J., Xie, Y., Zhou, L., and Hu, Z., High temperature compressive properties and room temperature fracture toughness of directionally solidified NiAl-based eutectic alloy, Mater. Des., 2009, vol. 30, pp. 2181–2185. doi 10.1016/j.matdes.2008.08.023CrossRefGoogle Scholar
  6. 6.
    Bochenek, K. and Basista, M., Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications, Prog. Aerosp. Sci., 2015, vol. 79, pp. 136–146. doi 10.1016/j.paerosci. 2015.09.003CrossRefGoogle Scholar
  7. 7.
    Wu, S., Wu, X., Wang, R., Liu, Q., and Gan, L., Effects of Ni vacancy, Ni antisite, Cr and Pt on the third-order elastic constants and mechanical properties of NiAl, Intermetallics, 2014, vol. 55, pp. 108–117. doi 10.1016/j.intermet.2014.04.022CrossRefGoogle Scholar
  8. 8.
    Wang, L., Shen, J., Shang, Z., and Fu, H., Microstructure evolution and enhancement of fracture toughness of NiAl–Cr(Mo)–(Hf, Dy) alloy with a small addition of Fe during heat treatment, Scr. Mater., 2014, vol. 89, no. 1, pp. 1–4. doi 10.1016/j.scriptamat.2014.07.002CrossRefGoogle Scholar
  9. 9.
    Shang, Z., Shen, J., Wang, L., Du, Y., Xiong, Y., and Fu, H., Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl–Cr(Mo) eutectic alloy, Intermetallics, 2015, vol. 57, no. 1, pp. 25–33. doi 10.1016/j.intermet. 2014.09.012CrossRefGoogle Scholar
  10. 10.
    Sheng, L.Y., Yang, F., Xi, T.F., Zheng, Y.F., and Guo, J.T., Improvement of compressive strength and ductility in NiAl–Cr(Nb)/Dy alloy by rapid solidification and HIP treatment, Intermetallics, 2012, vol. 27, no. 1, pp. 14–20. doi 10.1016/j.intermet.2012.01.014CrossRefGoogle Scholar
  11. 11.
    Frommeyer, G., Rablbauer, R., and Schäfer, H.J., Elastic properties of B2-ordered NiAl and NiAl–X (Cr, Mo, W) alloys, Intermetallics, 2010, vol. 18, no. 3, pp. 299–305. doi 10.1016/j.intermet.2009.07.026CrossRefGoogle Scholar
  12. 12.
    Zaitsev, A.A., Sentyurina, Z.A., Levashov, E.A., Pogozhev, Y.S., Sanin, V.N., Loginov, P.A., and Petrzhik, M.I., Structure and properties of NiAl–Cr(Co,Hf) alloys prepared by centrifugal SHS casting: 1. Room temperature investigations, Mater. Sci. Eng. A, 2017, vol. 690, pp. 463–472. doi 10.1016/j.msea.2016.09.075CrossRefGoogle Scholar
  13. 13.
    Zaitsev, A.A., Sentyurina, Z.A., Levashov, E.A., Pogozhev, Y.S., Sanin, V.N., Loginov, P.A., and Sidorenko, D.A., Structure and properties of NiAl–Cr(Co,Hf) alloys prepared by centrifugal SHS casting followed by vacuum induction remelting: 2. Evolution of the structure and mechanical behavior at high temperature, Mater. Sci. Eng. A, 2017, vol. 690, pp. 473–481. doi 10.1016/j.msea.2017.02.089CrossRefGoogle Scholar
  14. 14.
    Kaplanskii, Yu.Yu., Zaitsev, A.A., Levashov, E.A., Loginov, P.A., and Sentyurina, Zh.A., NiAl based alloy produced by HIP and SLM of pre-alloyed spherical powders: Evolution of the structure and mechanical behavior at high temperatures, Mater. Sci. Eng. A, 2018, vol. 717, no. 1, pp. 48–59. doi 10.1016/j.msea.2018.01.057CrossRefGoogle Scholar
  15. 15.
    Rogachev, A.S., Tolochko, B.P., Lyakhov, N.Z., Sharafutdinov, M.P., Popkov, N.A., Pirogov, B.Y., and Pis’menskaya, E.B., Characteristic features of structure formation of nickel monoaluminide formed in a gasless combustion wave, Crystallogr. Rep., 2003, vol. 48, no. 3, pp. 466–468. doi 10.1134/1.1578133CrossRefGoogle Scholar
  16. 16.
    Koch, C.C., Materials synthesis by mechanical alloying, Ann. Rev. Mater. Sci., 1989, vol. 19, pp. 121–143. doi 10.1146/annurev.ms.19.080189.001005CrossRefGoogle Scholar
  17. 17.
    Rogachev, A.S., Kochetov, N.A., Kurbatkina, V.V., Levashov, E.A., Grinchuk, P.S., Rabinovich, O.S., Sachkova, N.V., and Bernard, F., Microstructural aspects of gasless combustion of mechanically activated mixtures: 1. High-speed micro video recording of the Ni–Al composition, Combust., Explos., Shock Waves, 2006, vol. 42, no. 4, pp. 421–429. doi 10.1007/s10573-006-0071-1CrossRefGoogle Scholar
  18. 18.
    Kurbatkina, V.V., Levashov, E.A., and Kolesnichenko, K.V., Effect of mechanical pre-activation on reactivity of SHS mixtures, Izv. Vyssh. Uchebn. Zaved. Tsvet. Metall., 2000, no. 5, pp. 61–67.Google Scholar
  19. 19.
    Mason, B.A., Sippel, T.R., Groven, L.J., Gunduz, I.E., and Son, S.F., Combustion of mechanically activated Ni/Al reactive composites with microstructural refinement tailored using two-step milling, Intermetallics, 2015, vol. 66, pp. 88–95. doi 10.1016/j.intermet. 2015.06.009CrossRefGoogle Scholar
  20. 20.
    Manukyan, Kh.V., Kirakosyan, Kh.G., Grigoryan, Y.G., Niazyan, O.M., Yeghishyan, A.V., Kirakosyan A.G., and Kharatyan, S.L., Mechanism of molten-salt-controlled thermite reactions, Ind. Eng. Chem. Res., 2011, vol. 50, no. 19, pp. 10982–10988. doi 10.1021/ie2003544CrossRefGoogle Scholar
  21. 21.
    Dutta, B. and Froes, F.H., Additive manufacturing technology, in Additive Manufacturing of Titanium Alloys: State of the Art, Challenges, and Opportunities, London: Butterworth–Heineman, 2016, pp. 25–40. doi 10.1016/B978-0-12-804782-8.00003-3CrossRefGoogle Scholar
  22. 22.
    Cooke, A. and Slotwinski, J., NISTIR 7873: Properties of Metal Powders for Additive Manufacturing: A Review of the State of the Art of Metal Powder Property Testing, National Institute of Standards and Technology, 2015. doi 10.6028/NIST.IR.7873Google Scholar
  23. 23.
    Vacuum Systems and Technologies for Metallurgy and Heat Treatment (Catalogues). http://pdf.directindustry.com/pdf/ald/metal-additive-manufacturing/21806-526379.html.
  24. 24.
    Kaplanskii, Y.Y., Korotitskiy, A.V., Levashov, E.A., Sentyurina, Z.A., Loginov, P.A., Samokhin, A.V., and Logachev, I.A., Microstructure and thermomechanical behavior of Heusler phase Ni2AlHf-strengthened NiAl–Cr(Co) alloy produced by HIP of plasmaspheroidized powder, Mater. Sci. Eng. A, 2018, vol. 729, pp. 398–410. doi 10.1016/j.msea.2018.05.087CrossRefGoogle Scholar
  25. 25.
    Kurbatkina, V.V., Patsera, E.I., and Levashov, E.A., Fabrication of submicron powder of nickel monoaluminide by self-propagating high-temperature synthesis using sodium chloride as a functional additive, Tsvet. Met., 2017, no. 12, pp. 57–65. doi 10.17580/tsm.2017.12.07CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. V. Kurbatkina
    • 1
  • E. I. Patsera
    • 1
  • E. A. Levashov
    • 1
  • Yu. Yu. Kaplanskii
    • 1
  • A. V. Samokhin
    • 2
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.Baikov Institute of Metallurgy and Materials ScienceRussian Academy of SciencesMoscowRussia

Personalised recommendations