The Effect of Si Substitution for SiC on SHS in the Ti–Si–C System

Article
  • 6 Downloads

Abstract

Investigated was the effect of Si substitution for SiC on SHS in the Ti–Si–C system. Starting powders were intermixed to obtain 3Ti–SiC–C and 3Ti–Si–2C green mixtures and then green compacts by uniaxial pressing. The influence of heating rate, reactor temperature, and replacement of SiC by Si was studied by XRD, SEM, and TEM. In combustion products obtained in optimized conditions, Ti3SiC2 was found to be predominant. In comparison with conventional methods, our products obtained in a one-step low-temperature process contained minimal amounts of undesired impurities and required no finishing processes such as chemical purification.

Keywords

SHS Ti–Si–C system Ti3SiC2 SiC Si reaction parameters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Goesmann, F., Wenzel, R., and Schmid-Fetzer, R., Preparation of Ti3SiC2 by electron-beam-ignited solidstate reaction, J. Am. Ceram. Soc., 1998, vol. 81, no. 11, pp. 3025–3028. doi 10.1111/j.1151-2916.1998.tb02733.xCrossRefGoogle Scholar
  2. 2.
    Barsoum, M., El-Raghy, T., and Radovic, M., Ti3SiC2: A Layered machinable ductile carbide, Int. Ceram. Rev., 2000, vol. 49, no. 4, pp. 226–233.Google Scholar
  3. 3.
    http://www.u.arizona.edu/~liddelow/structure.html.Google Scholar
  4. 4.
    Du, Y., Schuster, J.C., Seifert, H., and Aldinger, F., Experimental investigation and thermodynamic calculation of the titanium–silicon–carbon system, J. Am. Ceram. Soc., 2000, vol. 83, no. 1, pp. 197–203. doi 10.1111/j.1151-2916.2000.tb01170.xCrossRefGoogle Scholar
  5. 5.
    Goto, T. and Hirai, T., Chemically vapor deposited Ti3SiC2, Mater. Res. Bull., 1987, vol. 22, no. 9, pp. 1195–1201.CrossRefGoogle Scholar
  6. 6.
    Barsoum, M.W. and El-Raghy, T., Synthesis and characterization of a remarkable ceramic: Ti3SiC2, J. Am. Ceram. Soc., 1996, vol. 79, no. 7, pp. 1953–1956. doi 10.1111/j.1151-2916.1996.tb08018.xCrossRefGoogle Scholar
  7. 7.
    Riley, D.P., Kisi, E.H., Wu, E., and McCallum, A., Self-propagating high-temperature synthesis of Ti3SiC2 from 3Ti + SiC + C reactants, J. Mater. Sci. Lett., 2003, vol. 22, no. 15, pp. 1101–1104. doi 10.1023/A:1024995126534CrossRefGoogle Scholar
  8. 8.
    Racault, C., Langlais, F., and Naslain, R., Solid-state synthesis and characterization of the ternary phase Ti3SiC2, J. Mater. Sci., 1994, vol. 29, no. 13, pp. 3384–3392. doi 10.1007/BF00352037CrossRefGoogle Scholar
  9. 9.
    El-Raghy, T. and Barsoum, M.W., Processing and mechanical properties of Ti3SiC2: I. Reaction path and microstructure evolution, J. Am. Ceram. Soc., 1999, vol. 82, no. 10, pp. 2849–2854. doi 10.1111/j.1151-2916.1999.tb02166.xCrossRefGoogle Scholar
  10. 10.
    Riley, D.P., Kisi, E.H., Hansen, T.C., and Hewat, W., Self-propagating high-temperature synthesis of Ti3SiC2: I. Ultra-high-speed neutron diffraction study of the reaction mechanism, J. Am. Ceram. Soc., 2002, vol. 85, no. 10, pp. 2417–2424. doi 10.1111/j.1151-2916.2002.tb00474.xCrossRefGoogle Scholar
  11. 11.
    Tayebifard, S.A., The effect of aluminum additive on phase transformation and microstructure of SHS-pro-duced MoSi2-based compounds, Ph.D. Thesis, Tehran: Materials and Energy Research Center, 2006.Google Scholar
  12. 12.
    Pampuch, R., Lis, J., Stobierski, L., and Tymkiewicz, M., Solid combustion synthesis of Ti3SiC2, J. Eur. Ceram. Soc., 1989, vol. 5, no. 5, pp. 283–287. https://doi.org/10.1016/0955-2219(89)90022-8.CrossRefGoogle Scholar
  13. 13.
    Feng, A., Orling, T., and Munir, Z.A., Field-activated pressure-assisted combustion synthesis of polycrystalline Ti3SiC2, J. Mater. Res., 1999, vol. 14, no. 3, pp. 925–939. https://doi.org/10.1557/JMR.1999.0124.CrossRefGoogle Scholar
  14. 14.
    Grigoryan, H.E., Rogachev, A.S., Ponomarev, V.I., and Levashov, A.E., Product structure formation at gasless combustion in the Ti–Si–C system, Int. J. Self-Propag. High-Temp. Synth., 1998, vol. 7, no. 4, pp. 507–516.Google Scholar
  15. 15.
    Grigoryan, H.E., Rogachev, A.S., and Sytschev, A.E., Gasless combustion in the Ti–Si–C system, Int. J. Self-Propag. High-Temp. Synth., 1997, vol. 6, no. 1, pp. 29–39.Google Scholar
  16. 16.
    Grigoryan, H.E., Rakhbari, R.G., Rogachev, A.S., Levashov, E.A., Ponomarev, V.I., Sheveiko, A.N., Shtanskii, D.V., and Ivanov, A.N., Structure and properties of composite targets formed upon combustion in the Ti–Si–C system, Izv. Vyssh. Uchebn. Zaved., Tsvetn. Metall., 2000, no. 1, pp. 55–69.Google Scholar
  17. 17.
    Lis, J., Pampuch, R., Piekarczyk. J., and Stobierski, L., New ceramics based on Ti3SiC2, Ceram. Int., 1993, vol. 19, no. 4, pp. 219–222. http://dx.doi.org/10.1016/0272-8842(93)90052-SCrossRefGoogle Scholar
  18. 18.
    Radovic, M., Barsoum, M.W., El-Raghy, T., and Wiederhorn, S.M., Tensile creep of fine grained (3–5 μm) Ti3SiC2 in the 1000–1200°C temperature range, Acta Mater., 2001, vol. 49, no. 19, pp. 4103–4112. http://dx.doi.org/10.1016/S1359-6454(01)00243-9CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Materials and Energy Research Center (MERC)Alvand StreetIran

Personalised recommendations