Advertisement

Composite W–Cu powders by joint reduction of oxides in combustion mode

  • H. V. Kirakosyan
  • S. V. AydinyanEmail author
  • S. L. KharatyanEmail author
Article

Abstract

Composite powders W–Cu were prepared via joint reduction of WO3 and CuO oxides with Mg‒C combined reducer in a combustion mode by using the method of coupled reactions. Combustion phenomenology and the processes of phase and microstructure formation were investigated by thermocouple and copper- wedge techniques combined with XRD, SEM, and EDS analyses. Thermal conditions of combustion and phase composition and microstructure of products were found to depend on a Mg/C ratio in green mixtures. It was established that the magnesiothermic reaction was preceded by the stage of low-caloric carbothermal reduction. Slow propagation of combustion wave was found to favor the complete reduction of oxides and formation of target W–Cu composite nanopowder.

Keywords

combustion synthesis W–Cu composite pseudoalloy combined reducer reduction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kim, Y.D., Oh, N.L., Oh, S.-T., and Moon, I.-H., Thermal conductivity of W–Cu composites at various temperatures, Mater. Lett., 2001, vol. 51, pp. 420–424. doi 10.1016/S0167-577X(01)00330-5CrossRefGoogle Scholar
  2. 2.
    Egorov, A.V., Kostornov, A.G., Koshelev, V.A., Mel’nikov, G.N., Pustogarov, A.V., Semenets, V.P., and Chernyshev, L.I., Properties of porous tungsten–copper and molybdenum–copper pseudoalloys, Sov. Powd. Metall. Met. Ceram., 1987, vol. 26, no. 2, pp. 137–140. doi 10.1007/BF00794131Google Scholar
  3. 3.
    Chen, P., Luo, G., Shen, Q., Li, M., and Zhang, L., Thermal and electrical properties of W–Cu composite produced by activated sintering, Mater. Design, 2013, vol. 46, no. 1, pp. 101–105. doi 10.1016/j.matdes.2012.09.034CrossRefGoogle Scholar
  4. 4.
    Nastasi, M., Saris, F.W., Hung, L.S., and Mayer, J.W., Stability of amorphous Cu/Ta and Cu/W alloys, J. Appl. Phys., 1985, vol. 58, no. 8, pp. 3052–3059. http://dx.doi.org/. doi 10.1063/1.335855CrossRefGoogle Scholar
  5. 5.
    Korthauer, M., Ataya, S., and El-Magd, E., Effects of deformed volume, volume fraction, and particle size on the deformation behavior of W/Cu composites, Theor. Appl. Fract. Mech., 2006, vol. 46, no. 1, pp. 38–45. doi 10.1016/j.tafmec.2006.05.002Google Scholar
  6. 6.
    Lee, J.S. and Kim, T.H., Densification and microstructure of the nanocomposite W–Cu powders, Nanostr. Mater., 1995, vol. 6, nos. 5–8, pp. 691–694. doi 10.1016/0965-9773(95)00152-2CrossRefGoogle Scholar
  7. 7.
    Hiraoka, Y., Hanado, H., and Inoue, T., Deformation behavior at room temperature of W–80 vol % Cu composite, Int. J. Refr. Met. Hard Mater., 2004, vol. 22, nos. 2–3, pp. 87–93. doi 10.1016/j.ijrmhm.2004.01.002CrossRefGoogle Scholar
  8. 8.
    Davim, J. P., Maranhão, C., Cabral, G., and Grácio, J., Performance of cutting tools in machining Cu/W alloys for application in EDM electrodes, Int. J. Refr. Met. Hard Mater., 2009, vol. 27, no. 4, pp. 676–682. doi 10.1016/j.ijrmhm.2008.10.018CrossRefGoogle Scholar
  9. 9.
    Wang, Ch.-Ch. and Lin, Y. Ch., Feasibility study of electrical discharge machining for W/Cu composite, Int. J. Refr. Met. Hard Mater., 2009, vol. 27, pp. 872–882. doi 10.1016/j.ijrmhm.2009.04.005CrossRefGoogle Scholar
  10. 10.
    Amirjan, M., Parvin, N., and Zangeneh-Madar, K., Mutual dependency of mechanical properties and contiguity in W–Cu composites, Mater. Sci. Eng. A, 2010, vol. 527, no. 26, pp. 6922–6929. doi 10.1016/j.msea.2010.06.076CrossRefGoogle Scholar
  11. 11.
    Radic, N., Gržeta, B., Gracin, D., and Car, T., Preparation and structure of Cu–W thin films, Thin Solid Films, 1993, vol. 228, nos. 1–2, pp. 225–228. doi 10.1016/0040-6090(93)90604-NCrossRefGoogle Scholar
  12. 12.
    Ghaderi Hamidi, A., Arabi, H., and Rastegari, S., Tungsten–copper composite production by activated sintering and infiltration, Int. J. Refr. Met. Hard Mater., 2011, vol. 29, no. 4, pp. 538–541. doi 10.1016/j.ijrmhm.2011.03.009CrossRefGoogle Scholar
  13. 13.
    Guo, Y., Yi, J., Luo, Sh., Zhou, Ch., Chen, Li., and Peng, Y., Fabrication of W–Cu composites by microwave infiltration, J. Alloys Comp., 2010, vol. 492, nos. 1–2, pp. L75–L78. doi 10.1016/j.jallcom.2009.12.011CrossRefGoogle Scholar
  14. 14.
    Maneshian, M.H. and Simchi, A., Solid state and liquid phase sintering of mechanically activated W–20 wt % Cu powder mixture, J. Alloys Comp., 2008, vol. 463, nos. 1–2, pp. 153–159. doi 10.1016/j.jallcom. 2007.08.080CrossRefGoogle Scholar
  15. 15.
    Nizhenko, V.I., Petrishchev, V.Ya., and Skorokhod, V.V., Effect of liquid phase on the densification of tungsten–copper and molybdenum–copper pseudoalloys in sintering, Powder Metall. Met. Ceram., 2008, vol. 47, nos. 3–4, pp. 163–170. doi 10.1007/s11106-008-9000-zCrossRefGoogle Scholar
  16. 16.
    Ahmadi, E., Malekzadeh, M., and Sadrnezhaad, S.K., W–15 wt % Cu nanocomposite produced by hydrogenreduction/sintering of WO3–CuO nano-powder, Int. J. Refr. Met. Hard Mater., 2010, vol. 28, no. 3, pp. 441–445. doi 10.1016/j.ijrmhm.2010.02.002CrossRefGoogle Scholar
  17. 17.
    Dorfman, L.P., Houck, D.L., Scheithauer, M.J., and Frisk, T.A., Synthesis and hydrogen reduction of tungsten–copper composite oxides, J. Mater. Res., 2002, vol. 17, no. 4, pp. 821–830. http://dx.doi.org/. doi 10.1557/JMR.2002.0120CrossRefGoogle Scholar
  18. 18.
    Tilliander, U., Bergqvist, H., and Seetharaman, S., Morphology studies of a W/Cu alloy synthesized by hydrogen reduction, J. Mater. Res., 2006, vol. 21, no. 6, pp. 1467–1475. http://dx.doi.org/. doi 10.1557/jmr.2006.0181CrossRefGoogle Scholar
  19. 19.
    Zhou, Y., Sun, Q. X., Liu, R., Wang, X.P., Liu, C.S., and Fang, Q.F., Microstructure and properties of fine grained W–15 wt % Cu composite sintered by microwave from the sol–gel prepared powders, J. Alloys Comp., 2013, vol. 547, pp. 18–22. doi 10.1016/j.jallcom.2012.08.143CrossRefGoogle Scholar
  20. 20.
    Wan, L., Cheng, J., Song, P., Wang, Y., and Zhu, T., Synthesis and characterization of W–Cu nanopowders by a wet-chemical method, Int. J. Refr. Met. Hard Mater., 2011, vol. 29, no. 4, pp. 429–434. doi 10.1016/j.ijrmhm.2011.01.006CrossRefGoogle Scholar
  21. 21.
    Cheng, J., Lei, Ch., Xiong, E., Jiang, Y., and Xia, Y., Preparation and characterization of W–Cu nanopowders by homogeneous precipitation process, J. Alloys Comp., 2006, vol. 421, nos. 1–2, pp. 146–150. doi 10.1016/j.jallcom.2005.08.087CrossRefGoogle Scholar
  22. 22.
    Ardestani, M., Arabi, H., Rezaian, H.R., and Razavizadeh, H., Synthesis and densification of W–30 wt % Cu composite powders using ammonium metatungstate and copper nitrate as precursors, Int. J. Refr. Met. Hard Mater., 2009, vol. 27, no. 4, pp. 796–800. doi 10.1016/j.ijrmhm.2009.01.001CrossRefGoogle Scholar
  23. 23.
    Merzhanov, A.G. and Mukasyan, A.S., Tverdoplamennoe gorenie (Solid-Flame Combustion), Moscow: Torus Press, 2007, pp. 280–282.Google Scholar
  24. 24.
    Moore, J.J. and Feng, H.J., Combustion synthesis of advanced materials: I. Reaction parameters, Prog. Mater. Sci., 1995, vol. 39, nos. 4–5, pp. 243–273. doi 10.1016/0079-6425(94)00011-5CrossRefGoogle Scholar
  25. 25.
    Varma, A., Rogachev, A.S., Mukasyan, A.S., and Hwang, S., Combustion synthesis of advanced materials: Principles and applications, Adv. Chem. Eng., 1998, vol. 24, pp. 79–226. doi 10.1016/S0065- 2377(08)60093-9CrossRefGoogle Scholar
  26. 26.
    Merzhanov, A.G., Thermally coupled processes of selfpropagating high-temperature synthesis, Dokl. Phys. Chem., 2010, vol. 434, no. 2, pp. 159–162. doi 10.1134/S0012501610100015CrossRefGoogle Scholar
  27. 27.
    Kharatyan, S.L. and Merzhanov, A.G., Coupled SHS reactions as a useful tool for synthesis of materials: An overview, Int. J. Self-Propag. High-Temp. Synth., 2012, vol. 21, no. 1, pp. 59–73. doi 10.3103/S1061386212010074CrossRefGoogle Scholar
  28. 28.
    Aydinyan, S.V., Kirakosyan, H.V., and Kharatyan, S.L., Cu–Mo composite powders obtained by combustion–coreduction process, Int. J. Refr. Met. Hard Mater., 2016, vol. 54, pp. 455–463. doi 10.1016/j.ijrmhm.2015.09.002CrossRefGoogle Scholar
  29. 29.
    Kirakosyan, H.V., Minasyan, T.T., Niazyan, O.M., Aydinyan, S.V., and Kharatyan, S.L., DTA/TGA study of CuO and MoO3 co-reduction by combined Mg/C reducers, J. Therm. Anal. Calorim., 2016, vol. 123, no. 1, pp. 35–41. doi 10.1007/s10973-015-4919-zCrossRefGoogle Scholar
  30. 30.
    Aydinyan, S.V., Gumruyan, Zh., Manukyan, Kh.V., and Kharatyan, S.L., Self-sustaining reduction of MoO3 by Mg + C mixture, Mater. Sci. Eng. B, 2010, vol. 172, no. 3, pp. 267–271. doi 10.1016/j.mseb. 2010.05.028CrossRefGoogle Scholar
  31. 31.
    Kharatyan, S.L., Chatilyan, H.A., and Merzhanov, A.G., Kinetics of tungsten carbidization by methane, Khim. Fiz., 1988, vol. 7, no. 6, pp. 800–806.Google Scholar
  32. 32.
    Kharatyan, S.L., Chatilyan, H.A., and Arakelyan, L.H., Kinetics of tungsten carbidization under non-isothermal conditions, Mater. Res. Bull., 2008, vol. 43, no. 4, pp. 897–906. doi 10.1016/j.materresbull.2007.05.003CrossRefGoogle Scholar
  33. 33.
    Merzhanov, A.G., Rumanov, E.N., and Khaikin, B.I., Multizone combustion of condenced systems, Zh. Prikl. Mekh. Tekh. Fiz., 1972, vol. 13, no. 6, pp. 99–105.Google Scholar
  34. 34.
    Merzhanov, A.G., Tverdoplamennoe gorenie (Solid-Flame Combustion), Chernogolovka: Izd. ISMAN, 2000, Ch. 3.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Nalbandyan Institute of Chemical PhysicsNational Academy of SciencesYerevanArmenia
  2. 2.Department of Inorganic and Analytical ChemistryYerevan State UniversityYerevanArmenia

Personalised recommendations