Solution-combustion synthesis of oxide nanoparticles from nitrate solutions containing glycine and urea: Thermodynamic aspects

  • Sh. M. Khaliullin
  • V. D. Zhuravlev
  • V. G. Bamburov


Solution-combustion synthesis (SCS) of nanoparticles was characterized by the temperature effect (ΔT ad) calculated upon neglect by the temperature dependence of heat capacity. Thus calculated ΔT ad values were found to be a linear function of the inverse radius of metal ions. Our calculations have shown that SCS reactions may yield not only oxides but also hydroxides and carbonates. Suggested was a simple formula for evaluating the ΔT ad values attained in SCS of complex oxides.


solution-combustion synthesis (SCS) metal oxides temperature effect adiabatic reaction ionic radius glycine urea 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Kingsley, J.J. and Patil, K.C., A novel combustion process for the synthesis of fine particle a-alumina and related oxide materials, Mater. Lett., 1988, vol. 6, nos. 11–12, pp. 427–432.CrossRefGoogle Scholar
  2. 2.
    Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.CrossRefGoogle Scholar
  3. 3.
    Zhuravlev, V.D., Bamburov, V.G., Beketov, A.R., Perelyaeva, L.A., Baklanova, I.V., Sivtsova, O.V., Vasil’ev, V.G., Vladimirova, E.V., Shevchenko, V.G., and Grigorov, I.G., Solution combustion synthesis of a-Al2O3 using urea, Ceram. Int., 2013, vol. 39, no. 2, pp. 1379–1384.CrossRefGoogle Scholar
  4. 4.
    Sherikar, B.N. and Umarji, A.M., Synthesis of γ-alumina by solution combustiom method using mixed fuel approach (urea + glycine fuel), Int. J. Res. Eng. Technol., 2013, IC-RICE Conference Issue, pp. 434–438.Google Scholar
  5. 5.
    Krishna, R.H., Nagabhushana, B.M., Sherikar, B.N., Murthy, N.S., Shivakumara, C., and Thomas, T., Luminescence enhancement in monoclinic CaAl2O4: Eu2+,Cr3+ nanophosphor by fuel-blend combustion synthesis, Chem. Eng. J., 2015, vol. 267, pp. 317–323.CrossRefGoogle Scholar
  6. 6.
    Bhaduri, S., Bhaduri, S.B., and Prisbrey, K.A., Autoignition synthesis of nanocrystalline MgAl2O4 and related nanocomposites, J. Mater. Res., 1999, vol. 14, no. 9, pp. 3571–3580.CrossRefGoogle Scholar
  7. 7.
    Mukasyan, A.S., Epstein, P., and Dinka, P., Solution combustion synthesis of nanomaterials, Proc. Combust. Inst., 2007, vol. 31, pp. 1789–1795.CrossRefGoogle Scholar
  8. 8.
    Chakraborty, A., Basu, R.N., and Maiti, H.S., Lowtemperature sintering of La(Ca)CrO3 prepared by an autoignition process, Mater. Lett., 2000, vol. 45, nos. 3–4, pp. 162–166.CrossRefGoogle Scholar
  9. 9.
    Azegami, K., Yoshinaka, M., Hirota, K., and Yamaguchi, O., Formation and sintering of LaCrO3 prepared by the hydrazine method, Mater. Res. Bull., 1998, vol. 33, no. 2, pp. 341–348.CrossRefGoogle Scholar
  10. 10.
    Colomer, M.T., Fumo, D., Jurado, J.R. and Segadres, A., Non-stoichiometric La1–xNiO3–d perovskites produced by combustion synthesis, J. Mater. Chem., 1999, vol. 9, no. 10, pp 2505–2510.CrossRefGoogle Scholar
  11. 11.
    Zhang, Ch., Li, Sh., Liu, X., Zhao, X., He, D., Qiu, H., Yu, Q., Wang, Sh., and Jiang, L., Low temperature synthesis of Yb doped SrCeO3 powders by gel combustion process, Int. J. Hydrogen Energ., 2013, vol. 38, no. 29, pp. 12921–12926.CrossRefGoogle Scholar
  12. 12.
    Jadhav, S.T., Dubal, S.U., Jamale A.P., Patil, S.P., Bhosale, C.H., Puri, V.R., and Jadhav, L.D., Structural, morphological and electrical studies of BaCe0.8Y0.2O3–d synthesized by solution combustion method, Ionics, 2015, vol. 21, no. 5, pp. 1295–1300.CrossRefGoogle Scholar
  13. 13.
    Silva, A.L.A., Conceição, L., Rocco, A.M., and Souza, M.M.V.M., Synthesis of Sr-doped LaMnO3 and LaCrO3 powders by combustion method: Structural characterization and thermodynamic evaluation, Cerâmica, 2012, vol. 58, no. 348, pp. 521–528.CrossRefGoogle Scholar
  14. 14.
    Ianos, R., An efficient solution for the single-step synthesis of 4CaO–Al2O3–Fe2O3 powders, J. Mater. Res., 2009, vol. 24, no. 1, pp. 245–252.CrossRefGoogle Scholar
  15. 15.
    Patil, K.C., Uruna, S.T. and Minami, S.T., Combustion synthesis: an update, Curr. Opin. Solid State Mater. Sci., 2002, vol. 6, no. 6, pp. 507–512.CrossRefGoogle Scholar
  16. 16.
    Alves, A.K, Bergmann, C.P., and Berutti, F.A., Novel Synthesis and Characterization of Nanostructured Materials: Engineering Materials, Berlin–Heidelberg: Springer, 2013.CrossRefGoogle Scholar
  17. 17.
    Khaliullin, Sh.M., Zhuravlev, V.D., Bamburov, V.G., and Ermakova, L.V., Combustion synthesis of submicron CaZrO3, Phys. Atomic Nuclei, 2015, vol. 78, no. 12, pp. 1382–1388.CrossRefGoogle Scholar
  18. 18.
    Khaliullin, Sh.M., Bamburov, V.G., Russkikh, O.V., Ostroushko, A.A., and Zhuravlev, V.D., CaZrO3 synthesis in combustion reactions with glycine, Dokl. Chem., 2015, vol., 461, pt. 2, pp. 93–95.CrossRefGoogle Scholar
  19. 19.
    Khaliullin, Sh.M., Zhuravlev, V.D., Russkikh, O.V., Ostroushko, A.A., and Bamburov, V.G., Solution-combustion synthesis and eletroconductivity of CaZrO3, Int. J. Self-Propag. High-Temp Synth., 2015, vol. 24, no. 2, pp. 83–88.CrossRefGoogle Scholar
  20. 20.
    Naumov, G.B., Ryzhkov, B.N., and Khodakovsky, I.L., Spravochnik termodinamicheskikh velichin (Thermodynamic Quantities: A Handbook), Moscow: Atomizdat, 1971.Google Scholar
  21. 21.
    Veryatin, U.D., Masherov, V.P., Ryabsev, N.G., Tarasov, V.I., Rogozkin, B.D., and Korobov, I.V., Termodinamicheskie svoystva neorganicheskikh veshchestv: Spravochnik (Thermodynamic Properties of Inorganic Compounds: A Handbook), Moscow: Atomizdat, 1965.Google Scholar
  22. 22.
    Dean, J.A., Lange’s Handbook of Chemistry, New York: McGraw-Hill, 1999.Google Scholar
  23. 23.
    Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S., and Jaffe, I., Selected Values of Chemical Thermodynamic Properties, Washington: National Bureau of Standards, 1952.Google Scholar
  24. 24.
    Shreir, L.L., Corrosion: Corrosion Control, Newnes–Butterworths, vol. 2, 1979.Google Scholar
  25. 25.
    CRC Handbook of Chemistry and Physics, Haynes, W.M., Ed., DVD Version, 2013.Google Scholar
  26. 26.
    Moiseev, G.K., Vatolin, N.A., Marchuk, L.A., and Il’inykh, N.I., Temperaturnye zavisimosti privedennoi energii Gibbsa nekotorykh neorganicheskikh veshchestv (Temperature Dependence of Reduced Gibbs Energies for Some Inorganic Compounds), Yekaterinburg: Izd. UrO RAN, 1997.Google Scholar
  27. 27.
    Karapet’yants, M.Kh., Khimicheskaya termodinamika (Chemical Thermodynamics), Moscow: Khimiya, 1975.Google Scholar
  28. 28.
    Krestov, G.A., Termodinamika ionnykh prosessov v rastvorakh (Thermodynamics of Ionic Processes in Solution), Leningrad: Khimiya, 1984.Google Scholar
  29. 29.
    Karapet’yants, M.Kh. and Drakin, S.I., Obshchaya i neorganicheskaya khimiya (General and Inorganic Chemistry), Moscow: Khimiya, 1981.Google Scholar
  30. 30.
    Jacobson, N.S., Thermodynamic Properties of Some Metal Oxide–Zirconia Systems, Cleveland, OH: NASA Levis Research Center, 1989.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • Sh. M. Khaliullin
    • 1
  • V. D. Zhuravlev
    • 1
  • V. G. Bamburov
    • 1
  1. 1.Institute of Solid State Chemistry, Ural BranchRussian Academy of SciencesYekaterinburgRussia

Personalised recommendations