Advertisement

Optical Memory and Neural Networks

, Volume 27, Issue 2, pp 89–99 | Cite as

Use of Adaptive Methods to Solve the Inverse Problem of Determination of Composition of Multi-Component Solutions

  • A. Efitorov
  • S. DolenkoEmail author
  • T. Dolenko
  • K. Laptinskiy
  • S. Burikov
Article

Abstract

This study considers solving the inverse problem of determination of salt or ionic composition of multi-component solutions of inorganic salts by their Raman spectra using artificial neural networks. From the point of view of data analysis, one of the key problems here is high input dimensionality of the data, as the spectrum is usually recorded in 1–2 thousand channels. The two main approaches used for dimensionality reduction are feature selection and feature extraction. In this paper, three feature extraction methods are compared: channel aggregation, principal component analysis, and discrete wavelet transformation. It is demonstrated that for neural network solution of the inverse problem of determination of salt composition, the best results are provided by channel aggregation.

Keywords

inverse problems artificial neural networks principal component analysis wavelet analysis aqueous solutions of salts Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kauffmann, T.H. and Fontana, M.D., Inorganic salts diluted in water probed by Raman spectrometry: Data processing and performance evaluation, Sens. Actuators, B, 2015, vol. 209, pp. 154–161.CrossRefGoogle Scholar
  2. 2.
    Rull, F. and De Saja, J.A., Effect of electrolyte concentration on the Raman spectra of water in aqueous solutions, J. Raman Spectrosc., 1986, vol. 17, no. 2, pp. 167–172.CrossRefGoogle Scholar
  3. 3.
    Dolenko, T.A., Churina, I.V., Fadeev, V.V., and Glushkov, S.M., Valence band of liquid water Raman scattering: some peculiarities and applications in the diagnostics of water media, J. Raman Spectrosc., 2000, vol. 31, pp. 863–870.CrossRefGoogle Scholar
  4. 4.
    Burikov, S.A., Dolenko, T.A., Velikotnyi, P.A., Sugonyaev, A.V., and Fadeev, V.V., The effect of hydration of ions of inorganic salts on the shape of the Raman stretching band of water, Opt. Spectrosc., 2005, vol. 98, no. 2, pp. 235–239.CrossRefGoogle Scholar
  5. 5.
    Rudolph, W.W. and Irmer, G., Raman and infrared spectroscopic investigation on aqueous alkali metal phosphate solutions and density functional theory calculations of phosphate-water clusters, Appl. Spectrosc., 2007, vol. 61, no. 12, pp. 274A–292A.CrossRefGoogle Scholar
  6. 6.
    Sadate, S., Kassu, A., Farley, C.W., Sharma, A., Hardisty, J., and Lifson, Miles T.K., Standoff Raman measurement of nitrates in water, in Proc. SPIE Remote Sensing and Modeling of Ecosystems for Sustainability VIII, 2011, pp. 81560D-1-6.Google Scholar
  7. 7.
    Somekawa, T., Tani, A., and Fujita, M., Remote detection and identification of CO2 dissolved in water using a Raman Lidar System, Appl. Phys. Express, 2011, vol. 4, pp. 112401-1-3.CrossRefGoogle Scholar
  8. 8.
    Mernagh, T.P. and Wilde, A.R., The use of the laser Raman microprobe for the determination of salinity in fluid inclusions, Geochim. Cosmochim. Acta, 1989, vol. 53. pp. 765–771.CrossRefGoogle Scholar
  9. 9.
    Burikov, S.A., Churina, I.V., Dolenko, S.A., Dolenko, T.A., and Fadeev, V.V., New approaches to determination of temperature and salinity of seawater by laser Raman spectroscopy, EARSeL e Proc., 2004, vol. 3, no. 3, pp. 298–305.Google Scholar
  10. 10.
    Burikov, S.A., Dolenko, S.A., Dolenko, T.A., and Persiantsev, I.G., Application of artificial neural networks to solve problems of identification and determination of concentration of salts in multi-component water solutions by Raman spectra, Opt. Mem. Neural Networks, 2010, vol. 19, no. 2, pp. 140–148.CrossRefGoogle Scholar
  11. 11.
    Efitorov, A., Burikov, S., Dolenko, T., Laptinskiy, K., and Dolenko, S. Significant feature selection in neural network solution of an inverse problem in spectroscopy, Procedia Comput. Sci., 2015, vol. 66, pp. 93–102.CrossRefGoogle Scholar
  12. 12.
    Dolenko, S., Dolenko, T., Burikov, S., Fadeev, V., Sabirov, A., and Persiantsev, I., Comparison of input data compression methods in neural network solution of inverse problem in Laser Raman spectroscopy of natural waters, ICANN 2012, Part II: Lecture Notes in Computer Science, Villa, A.E.P., Eds., 2012, vol. 7553, pp. 443–450.Google Scholar
  13. 13.
    Hassoun, M.H., Fundamentals of Artificial Neural Networks, Cambridge, MA, USA: MIT Press, 1995.zbMATHGoogle Scholar
  14. 14.
    Haykin, S.S., Neural Networks and Learning Machines, 3rd ed., Upper Saddle River, NJ, USA: Pearson, 2009.Google Scholar
  15. 15.
    Han, S., Mao, H., and Dally W.J., Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding, arXiv:1510.00149.Google Scholar
  16. 16.
    Kamruzzaman, S.M. and Hasan, A.R., Pattern Classification using Simplified Neural Networks, arXiv:1009.4983v1 [cs.NE].Google Scholar
  17. 17.
    Peng, H., Ding, C., and Long, F., Minimum redundancy maximum relevance feature selection, IEEE Intell. Syst., 2005, vol. 20, no. 6, pp. 70–71.Google Scholar
  18. 18.
    Gevrey, M., Dimopoulos, I., and Lek, S., Review and comparison of methods to study the contribution of variables in artificial neural network models. Ecol. Modell., 2003, vol. 160, pp. 249–264.CrossRefGoogle Scholar
  19. 19.
    Dolenko, S., Burikov, S., Dolenko, T., Efitorov, A., Gushchin, K., and Persiantsev, I., Neural network approaches to solution of the inverse problem of identification and determination of partial concentrations of salts in multi-component water solutions, in Artificial Neural Networks and Machine Learning–ICANN 2014, Lecture Notes in Computer Science, Wermter, S., Eds., 2014, vol. 8681, pp. 805–812.CrossRefGoogle Scholar
  20. 20.
    Efitorov, A., Dolenko, T., Burikov, S., Laptinskiy, K., and Dolenko, S., Solution of an inverse problem in Raman spectroscopy of multi-component solutions of inorganic salts by artificial neural networks, in ICANN 2016, Part II: Lecture Notes in Computer Science, Villa, A.E.P., Eds., 2016, vol. 9887, pp. 355–362.Google Scholar
  21. 21.
    Strang, G. and Nguyen, T., Wavelets and Filter Banks, 2nd ed., Wellesley, MA, USA: Wellesley-Cambridge Press, 1996.zbMATHGoogle Scholar
  22. 22.
    Mallat, S.G., A theory for multiresolution signal decomposition: the wavelet representation, IEEE Trans. Pattern Recognit. Mach. Intell., 1989, vol. 11, no. 7, pp. 674–693. 1989.CrossRefzbMATHGoogle Scholar
  23. 23.
    Daubechies, I., Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, vol. 41, no. 7, pp. 909–996.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lachaux, J.-P., Lutz, A., Rudrauf, D., Cosmelli, D., Le Van Quyen, M., Martinerie, J., and Varela, F., Estimating the time-course of coherence between single-trial brain signals: an introduction to wavelet coherence, Neurophysiol. Clin., 2002, vol. 32, no. 3, pp. 157–174.Google Scholar
  25. 25.
    Hramov, A.E. and Koronovskii, A.A., An approach to chaotic synchronization, Chaos, 2004, vol. 14, no. 3, pp. 603–610.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Daubechies, I., Ten Lectures on Wavelets, Philadelphia, PA, USA: Society for Industrial and Applied Mathematics, 1992.CrossRefzbMATHGoogle Scholar
  27. 27.
  28. 28.
  29. 29.
  30. 30.
    Efitorov, A., Dolenko, T., Burikov, S., Laptinskiy, K., and Dolenko, S., Neural network solution of an inverse problem in Raman spectroscopy of multi-component solutions of inorganic salts, Biologically Inspired Cognitive Architectures (BICA) for Young Scientists: In Proc. of the First International Early Research Career Enhancement School, Samsonovich, A.V., Klimov, V.V., and Rybina, G.V., Eds., 2016, pp. 273–279.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. Efitorov
    • 1
  • S. Dolenko
    • 1
    Email author
  • T. Dolenko
    • 1
    • 2
  • K. Laptinskiy
    • 1
    • 2
  • S. Burikov
    • 1
    • 2
  1. 1.Skobeltsyn Institute of Nuclear PhysicsMoscow State UniversityMoscowRussia
  2. 2.Phaculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations