Optical Memory and Neural Networks

, Volume 27, Issue 1, pp 10–22 | Cite as

Dependence of Critical Parameters of 2D Ising Model on Lattice Size

  • B. V. Kryzhanovsky
  • M. Yu. Malsagov
  • I. M. Karandashev
Article
  • 4 Downloads

Abstract

For the 2D Ising model, we analyzed dependences of thermodynamic characteristics on number of spins by means of computer simulations. We compared experimental data obtained using the Fisher-Kasteleyn algorithm on a square lattice with N = l × l spins and the asymptotic Onsager solution (N → ∞). We derived empirical expressions for critical parameters as functions of N and generalized the Onsager solution on the case of a finite-size lattice. Our analytical expressions for the free energy and its derivatives (the internal energy, the energy dispersion and the heat capacity) describe accurately the results of computer simulations. We showed that when N increased the heat capacity in the critical point increased as lnN. We specified restrictions on the accuracy of the critical temperature due to finite size of our system. Also in the finite-dimensional case, we obtained expressions describing temperature dependences of the magnetization and the correlation length. They are in a good qualitative agreement with the results of computer simulations by means of the dynamic Metropolis Monte Carlo method.

Keywords

2D Isinig model spin systems Onsager solution finite-size lattice free boundary conditions computer simulations critical temperature magnetization analytic expressions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baxter, R.J., Exactly Solved Models in Statistical Mechanics, London: Academic, 1982.MATHGoogle Scholar
  2. 2.
    Stanley, H., Introduction to Phase Transitions and Critical Phenomena, Oxford: Clarendon, 1971.Google Scholar
  3. 3.
    Onsager, L., Crystal statistics, I. A two-dimensional model with an order–disorder transition, Phys. Rev., 1944, vol. 65, no. 3–4, pp. 117–149.Google Scholar
  4. 4.
    Huang, K., Statistical Mechanics, New York: Wiley, 1987.MATHGoogle Scholar
  5. 5.
    Dixon, J.M., Tuszynski, J.A., and Clarkson, P., From Nonlinearity to Coherence: Universal Features of Nonlinear Behavior in Many-Body Physics, Oxford: Clarendon Press, 1997.Google Scholar
  6. 6.
    Kramers, H.A. and Wannier, G.H., Statistics of the two-dimensional ferromagnet, Part I, Phys. Rev., 1941, vol. 60, no. 3, pp. 252–262.MathSciNetMATHGoogle Scholar
  7. 7.
    Kubo, R., An analytic method in statistical mechanics, Busserion Kenkyu (Japan), 1943, vol. 1, pp. 1–13.Google Scholar
  8. 8.
    Bonner, J.C. and Fisher, M.E., Linear magnetic chains with anisotropic coupling, Phys. Rev. A, 1964, vol. 135, no. 3, pp. A640–A658.CrossRefGoogle Scholar
  9. 9.
    Baker, G.A., Jr., Rushbrooke, G.S., and Gilbert, H.E., High-temperature series expansions for the spin 1/2 Heisenberg model by the method of irreducible representations of the symmetric group, Phys. Rev. A, 1964, vol. 135, no. 5, pp. 1272–1277.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Kondo, J. and Yamaji, K., Green’s-function formalism of the one-dimensional Heisenberg spin system, Adv. Theor. Phys., 1972, vol. 47, no. 3, pp. 807–818.CrossRefGoogle Scholar
  11. 11.
    Cullen, J.J. and Landau, D.P., Monte Carlo studies of one-dimensional quantum Heisenberg and XY models, Phys. Rev. B, 1983, vol. 27, no. 1, pp. 297–313.CrossRefGoogle Scholar
  12. 12.
    Lyklema, J.W., Monte Carlo study of the one-dimensional quantum Heisenberg ferromagnet near T = 0, Phys. Rev. B, 1983, vol. 27, no. 5, pp. 3108–3110.CrossRefGoogle Scholar
  13. 13.
    Marcu, M., Muller, J., and Schmatzer, F.-K., Quantum Monte Carlo simulation of the one-dimensional spin-S xxz model, II. High precision calculations for S = 1/2, J. Phys. A: Math. Gen., 1985, vol. 18, no. 16, pp. 3189–3203.CrossRefGoogle Scholar
  14. 14.
    Schlottmann, P., Low-temperature behavior of the S = (1/2) ferromagnetic Heisenberg chain, Phys. Rev. B, 1986, vol. 33, no. 8, pp. 4880–4886.CrossRefGoogle Scholar
  15. 15.
    Kac, M. and Ward, J., A combinatorial solution of the two-dimensional Ising model, Phys. Rev., 1952, vol. 88, no. 7, pp. 1332–1337.CrossRefMATHGoogle Scholar
  16. 16.
    Takahashi, M. and Yamada, M., Critical behavior of spin-1/2 one-dimensional Heisenberg ferromagnet at low temperatures, J. Phys. Soc. Jpn., 1986, vol. 55, no. 7, pp. 2024–2036.CrossRefGoogle Scholar
  17. 17.
    Majumdar, C.K. and Ramarao, I., Critical field and low-temperature critical indices of the ferromagnetic Ising model, Phys. Rev. B, 1980, vol. 22, no. 8, pp. 3288–3293.CrossRefGoogle Scholar
  18. 18.
    Kryzhanovsky, B.V. and Litinskii, L.B., Generalized Bragg-Williams equation for systems with arbitrary longrange interaction, Dokl. Math., 2014, vol. 90, no. 3, pp. 784–787.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kryzhanovsky, B. and Litinskii, L., Applicability of n-vicinity method for calculation of free energy of Ising model, J. Phys. A: Math. Gen., 2017, vol. 468, pp. 493–507.MathSciNetGoogle Scholar
  20. 20.
    Amit, D., Gutfreund, H., and Sompolinsky, H., Statistical mechanics of neural networks near saturation, Adv. Phys., 1987, vol. 173, pp. 30–67.Google Scholar
  21. 21.
    van Hemmen, J.L. and Kuhn, R., Collective phenomena in neural networks, in Models of Neural Networks, Domany, E., van Hemmen, J.L., and Shulten, K., Eds., Berlin: Springer-Verlag, 1992, pp. 1–105.Google Scholar
  22. 22.
    Martin, O.C., Monasson, R., and Zecchina, R., Statistical mechanics methods and phase transitions in optimization problems, J. Comput. Theor. Nanosci., 2001, vol. 265, nos. 1–2, pp. 3–67.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Karandashev, I., Kryzhanovsky, B., and Litinskii, L., Weighted patterns as a tool to improve the Hopfield model, Phys. Rev. E, 2012, vol. 85, p. 041925.CrossRefGoogle Scholar
  24. 24.
    Hinton, G.E., Osindero, S., and The, Y., A fast learning algorithm for deep belief nets, Computation, 2006, vol. 18, pp. 1527–1554.MathSciNetMATHGoogle Scholar
  25. 25.
    Wainwright, M.J., Jaakkola, T., and Willsky, A.S., A new class of upper bounds on the log partition function, IEEE Trans. Inf. Theory, 2005, vol. 51, no. 8, pp. 2313–2335.MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Yedidia, J.S., Freeman, W.T., and Weiss, Y. Constructing free-energy approximations and generalized belief propagation algorithms, IEEE Trans. Inf. Theory, 2005, vol. 51, no. 8, pp. 2282–2312.MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Blote, H.W.J., Shchur, L.N., and Talapov, A.L., The cluster processor: new results, Int. J. Mod. Phys. C, 1999, vol. 10, p. 1137.CrossRefGoogle Scholar
  28. 28.
    Häggkvist, R., Rosengren, A., Lundow, P.H., Markström, K., Andren, D., and Kundrotas, P., On the Ising model for the simple cubic lattice, Adv. Phys., 2007, vol. 56, no. 5, pp. 653–755.CrossRefMATHGoogle Scholar
  29. 29.
    Lundow, P.H. and Markstrom, K., The critical behavior of the Ising model on the 4-dimensional lattice, Phys. Rev. E, 2004, vol. 80, p. 031104.CrossRefGoogle Scholar
  30. 30.
    Lundow, P.H. and Markstrom, K., The discontinuity of the specific heat for the 5D Ising model, Nucl. Phys. B, 2015, vol. 895, pp. 305–318.MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Dixon, J.M., Tuszynski, J.A., and Carpenter, E.J., Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models, Int. J. Mod. Phys. A, 2005, vol. 349, pp. 487–510.MathSciNetGoogle Scholar
  32. 32.
    Kasteleyn, P., Dimer statistics and phase transitions, J. Math. Phys., 1963, vol. 4, no.2.Google Scholar
  33. 33.
    Fisher, M., On the dimer solution of planar Ising models, J. Math. Phys., 1966, vol. 7, no.11.Google Scholar
  34. 34.
    Karandashev, Ya.M. and Malsagov, M.Yu., Polynomial algorithm for exact calculation of partition function for binary spin model on planar graphs, Opt. Mem. Neural Networks, 2017, vol. 26, no. 2. https://arxiv.org/abs/1611.00922.Google Scholar
  35. 35.
    Schraudolph, N. and Kamenetsky, D., Efficient exact inference in planar Ising models, Proc. 21st Int. Conf. on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 8–10, 2008, Red Hook, NY: Curran Associates, 2008., 2008. https://arxiv.org/abs/0810.4401.Google Scholar
  36. 36.
    Yang, C.N., The spontaneous magnetization of a two-dimensional Ising model, Phys. Rev., 1952, vol. 65, pp. 808–816.MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Kryzhanovsky, B.V., The spectral density of a spin system calculated for solvable models. http://arxiv.org/abs/1704.01351.Google Scholar
  38. 38.
    Dixon, J.M., Tuszynski, J.A., and Carpenter, E.J., Analytical expressions for energies, degeneracies and critical temperatures of the 2D square and 3D cubic Ising models, J. Phys. A: Math. Gen., 2005, vol. 349, pp. 487–510.MathSciNetGoogle Scholar
  39. 39.
    Karandashev, Ya.M., Kryzhanovsky, B.V., and Malsagov, M.Yu., Analytical expressions for a finite-size 2D Ising model, Opt. Mem. Neural Networks, 2017, vol. 26, no. 3, pp. 165–171.CrossRefGoogle Scholar
  40. 40.
    Häggkvist, R., Rosengren, A., Andrén, D., Kundrotas, P., Lundow, P.H., and Markström, K., Computation of the Ising partition function for two-dimensional square grids, Phys. Rev. E, 2004, vol. 69, p. 046104.CrossRefMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • B. V. Kryzhanovsky
    • 1
  • M. Yu. Malsagov
    • 1
  • I. M. Karandashev
    • 1
    • 2
  1. 1.Scientific Research Institute for System AnalysisRussian Academy of SciencesMoscowRussia
  2. 2.Peoples Friendship University of Russia (RUDN University)MoscowRussia

Personalised recommendations