Optical Memory and Neural Networks

, Volume 25, Issue 1, pp 16–24 | Cite as

Adaptive methods of solving inverse problems for improvement of fidelity of molecular DNA computations

  • T. A. Dolenko
  • S. A. Burikov
  • A. O. Efitorov
  • K. A. Laptinsky
  • O. E. Sarmanova
  • S. A. Dolenko
Article

Abstract

Elaboration of methods of monitoring of biochemical reactions with DNA strands is necessary to solve one of the main problems in creation of biocomputers—improvement of fidelity of molecular DNA computations. In this paper, the results of solution of inverse two-parameter problems of laser Raman spectroscopy on determination of the types and concentration of DNA nitrogenous bases in multicomponent solutions are presented. Comparative analysis of the three used methods of solving these problems has demonstrated convincing advantages of artificial neural networks and of the method of projection to latent structures. Use of adaptive methods allowed achieving the accuracy of determining the concentration of each base in two-component solutions about 0.2–0.4 g/L.

Keywords

inverse problems molecular DNA computations neural networks projection to latent structures laser Raman spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Paun, G., DNA-Computer. New Computing Paradigms, M.: Mir, 2004, p. 528.Google Scholar
  2. 2.
    Gerd, HG.M.-B., The biological microprocessor, or how to build a computer with biological parts, Comput. Struct. Biotechnol. J., 2013, vol. 7, no. 8, pp. 1–18.Google Scholar
  3. 3.
    Watson, J. and Crick, F., Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid, Nature, 1953, vol. 171, no. 4356, pp. 737–738.CrossRefGoogle Scholar
  4. 4.
    Bruce, A., Molecular Biology of the Cell, Fifth Ed., N.Y.; L.: Garland Science, 2007, p. 1392.Google Scholar
  5. 5.
    Adleman, L.M., Molecular computation of solutions to combinatorial problems, Science, 1994, vol. 266, pp. 1021–1024.CrossRefGoogle Scholar
  6. 6.
    Adleman, L.M., On constructing a molecular computer, DIMACS Series on Discrete Mathematics and Theoretical Computer Science, 1996, vol. 27, pp. 1–21.MathSciNetGoogle Scholar
  7. 7.
    Lipton, R.J., DNA solution of hard computational problems, Sci. New Ser., 1995, vol. 268, no. 5210, pp. 542–545.Google Scholar
  8. 8.
    Muhammad, M.S., Ueda, S., Ono, O., et al., Solving elevator scheduling problem using DNA computing approach, Adv. Soft Comput., 2005, pp. 359–370.Google Scholar
  9. 9.
    Watada, J., Kojima, S., Ueda, S., and Ono, O., DNA computing approach to optimal decision problems, Int. J. Innovative Comput., Inform. Control, 2006, vol. 2, no. 1, pp. 273–282.Google Scholar
  10. 10.
    Jeng, D.J-F., Kim, I., and Watada, J., DNA-based evolutionary algorithm for cable trench problem, Lect. Notes Artificial Intelligence, 2006, vol. 4253, pp. 922–929.Google Scholar
  11. 11.
    Saman, H., Nazri, K., and Suriayati, C., A sticker-based model using DNA computing for generating real random numbers, Int. J. Security Its Appl., 2014, vol. 8, no. 4, pp. 113–122.CrossRefGoogle Scholar
  12. 12.
    Madahian, B., Salighehdar, A., and Amini, R., Applying DNA computation to error detection problem in rulebased systems, J. Intelligent Learning Systems Appl., 2015, vol. 7, pp. 21–36.CrossRefGoogle Scholar
  13. 13.
    Rahman, N.H.U., Balamurugan, C., and Mariappan, R., A Novel DNA computing based encryption and decryption algorithm, Procedia Comput. Sci., 2015, vol. 46, pp. 463–475.CrossRefGoogle Scholar
  14. 14.
    Prescott, B., Steinmetz, W., and Thomas, G.J., Jr., Characterization of DNA structures by Laser Raman Spectroscopy, Biopolymers, 1984, vol. 23, pp. 235–256.Google Scholar
  15. 15.
    Shanmugasundaram, M. and Puranik, M., Vibrational markers of structural distortion in adenine nucleobases upon DNA damage, Phys. Chem. Chem. Phys., 2011, vol. 13, pp. 3851–3862.CrossRefGoogle Scholar
  16. 16.
    Dolenko, T.A., Burikov, S.A., Laptinskiy, K.A., Moskovtsev, A.A., Mesitov, M.V., and Kubatiev, A.A., Improvement of fidelity of molecular DNA computing using laser spectroscopy, Laser Phys., 2015, vol. 25, p. 035202 1–10.CrossRefGoogle Scholar
  17. 17.
    Laptinskiy, K., Burikov, S., and Dolenko, T., Determination of type and concentration of DNA nitrogenous bases by Raman Spectroscopy, Proceedings of SPIE—The International Society for Optical Engineering, 2015, vol. 9448, pp. 94480 1–8.Google Scholar
  18. 18.
    Hassoun, M.H., Fundamentals of Artificial Neural Networks. Massachusetts, Cambridge: MIT Press, 1995, p. 511.MATHGoogle Scholar
  19. 19.
    Yang, H. and Xu, M., Solving inverse bimodular problems via artificial neural network, Inverse Problems Sci. Eng., 2009, vol. 17, no. 8, pp. 999–1017.CrossRefMATHGoogle Scholar
  20. 20.
    Gerdova, I.V., Dolenko, S.A., Dolenko, T.A., Churina, I.V., and Fadeev, V.V., New opportunity solutions to inverse problems in laser spectroscopy involving artificial neural networks, Izvestiya Akademii Nauk, Seriya Fizicheskaya, 2002, vol. 66, no. 8, pp. 1116–1124.Google Scholar
  21. 21.
    Burikov, S.A., Dolenko, S.A., Dolenko, T.A., and Persiantsev, I.G., Application of artificial neural networks to solve problems of identification and determination of concentration of salts in multi-component water solutions by Raman spectra, Opt. Mem. Neural Networks (Inform. Opt.), 2010, vol. 19, no. 2, pp. 140–148.CrossRefGoogle Scholar
  22. 22.
    Burikov, S.A., Vervald, A.M., Vlasov, I.I., Dolenko, S.A., Laptinskiy, K.A., and Dolenko, T.A., Use of neural network algorithms for elaboration of fluorescent biosensors on the base of nanoparticles, Opt. Mem. Neural Networks (Inform. Opt.), 2013, vol. 22, no. 3, pp. 156–165.CrossRefGoogle Scholar
  23. 23.
    Lee, J.Y., Shin, S.-Y., Park, T.H., and Zhang, B.-T., Solving traveling salesman problems with DNA molecules encoding numerical values, Biosystems, 2004, vol. 78, pp. 39–47.CrossRefGoogle Scholar
  24. 24.
    James, K.D., Boles, A.R., Henckel, D., and Ellington, A.D., The fidelity of template-directed oligonucleotide ligation and its relevance to DNA computation, Nucl. Acid Res., 1998, vol. 26, no. 22, pp. 5203–5211.CrossRefGoogle Scholar
  25. 25.
    Sharaf, M., Illman, D., and Kowalski, B., Chemometrics, N.Y.: Wiley, 1986, p. 1931.Google Scholar
  26. 26.
    Brown, S.D., Tauler, R., and Walczak, B., Comprehensive Chemometrics. Chemical and Biochemical Data Analysis, vol. 4, Amsterdam: Elsevier, 2009, p. 2896.Google Scholar
  27. 27.
    Esbensen, K.H., Multivariate Data Analysis—In Practice, an Introduction to Multivariate Data Analysis and Experimental Design, 5th Ed., 2006, p. 598.Google Scholar
  28. 28.
    Kessler, W. and Kessler, R.W., Multivariate curve resolution: a method of evaluating the kinetics of biotechnological reactions, Analyt. Bioanalyt. Chem., 2006, vol. 384, no. 5, pp. 1087–1095.MathSciNetCrossRefGoogle Scholar
  29. 29.
    Dolenko, T., Burikov, S., Dolenko, S., Efitorov, A., Plastinin, I., Yuzhakov, V., and Patsaeva, S., Raman spectroscopy of water-ethanol solutions: the estimation of hydrogen bonding energy and the evidence of clathratelike structures, J. Phys. Chem. A, 2015, vol. 119, no. 44, pp. 10806–10815.CrossRefGoogle Scholar
  30. 30.
    Efitorov, A.O., Burikov, S.A., Dolenko, T.A., Persiantsev, I.G., and Dolenko, S.A., Comparison of the quality of solving the inverse problems of spectroscopy of multi-component solutions with neural network methods and with the method of projection to latent structures, Opt. Mem. Neural Networks (Inform. Opt.), 2015, vol. 24, no. 2, pp. 93–101.CrossRefGoogle Scholar
  31. 31.
    Dolenko, S., Efitorov, A., Burikov, S., Dolenko, T., Laptinskiy, K., and Persiantsev, I., Neural network approaches to solution of the inverse problem of identification and determination of the ionic composition of multi-component water solutions, Commun. Comput. Inform. Sci. (CCIS), 2015, vol. 517, pp. 109–118.CrossRefGoogle Scholar
  32. 32.
    Wehrens, R., Chemometrics with R., Heidelberg, Springer-Verlag, 2011, p. 286.CrossRefMATHGoogle Scholar
  33. 33.
    Dolenko, S., Dolenko, T., Burikov, S., Fadeev, V., Sabirov, A., and Persiantsev, I., Comparison of input data compression methods in neural network solution of inverse problem in Laser Raman Spectroscopy of natural waters, Lect. Notes Comput. Sci., 2012, vol. 7553, pp. 443–450.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • T. A. Dolenko
    • 1
    • 2
  • S. A. Burikov
    • 1
    • 2
  • A. O. Efitorov
    • 1
    • 2
  • K. A. Laptinsky
    • 1
    • 2
  • O. E. Sarmanova
    • 2
  • S. A. Dolenko
    • 1
  1. 1.Skobeltsyn Institute of Nuclear PhysicsLomonosov Moscow State UniversityMoscowRussia
  2. 2.Physics DepartmentLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations