Optical Memory and Neural Networks

, Volume 23, Issue 3, pp 177–184 | Cite as

About creation of population inversion in mixture of inert noble gas and metal vapor



The results of the theoretical study of lasing in hollow cathode discharge (HCD) plasma are presented. The ion metal transitions were excited by second-kind collisions at HCD of noble gas-metal vapor mixtures, such as He-Be, Ar-Ca, Kr-Ca, Kr-Sr, Ne-Ga, Ne-In, He-In, Ne-Tl, and He-Tl. The dependences of the level population densities, gain and specific laser output power on HCD parameters are calculated. As a result, the lasing on 38 new transitions in the infrared wavelength range of 689…3724 nm were predicted. Studied lasers can become effective sourses of radiation for using in metrology


ion metal vapor laser gain laser output power mathematical modeling 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Privalov, V.E., Puchkov, I.V., and Fedorin, L.V. Messenger SPbO AIS, 2007, no. 3, p. 82.Google Scholar
  2. 2.
    Sem, M.F., Ionnye lasery na parah metallov [in Russian], Encyclopedia of the low-temperature plasma, Fortov, V.E., Ed., Volume XI-4. Gas and Plasma Lasers, M.: Fizmatlit, 2005, pp. 422–439.Google Scholar
  3. 3.
    Kalinchenko, G.A. and Ivanov, I.G. The processes in hollow cathode discharge excited by steady-state and pulse currents, Proc. SPIE, 2001, vol. 4243, pp. 21–28.CrossRefGoogle Scholar
  4. 4.
    Zinchenko, S.P. and Ivanov, I.G. Pulsed hollow-cathode ion lasers: pumping and lasing parameters, Quantum Electronics, 2012, vol. 42, no. 6, pp. 518–523.CrossRefGoogle Scholar
  5. 5.
    Turner-Smith, A.R., Green, J.M., and Webb, C.E., Charge-transfer into excited states in thermal energy collisions, J. Phys. B: At. Mol. Opt. Phys., 1973, vol. 6, no. 1, pp. 114–130.CrossRefGoogle Scholar
  6. 6.
    Ivanov, I.G., Latush, E.L., and Sem, M.F., Metal Vapor Ion Lasers: Kinetic Processes and Gas Discharge, Wiley, Chichester-New York-Brisbane-Toronto-Singapore, 1996.Google Scholar
  7. 7.
    Zinchenko, S.P., Ivanov, I.G., and Sem, M.F., Spectral and power output characteristics of the pulsed He-Hg and Ne-Tl hollow cathode lasers with charge-transfer excitation, Proc. SPIE, 1993, vol. 2110, pp. 150–165.CrossRefGoogle Scholar
  8. 8.
    Kalinchenko, G.A., Ivanov, I.G., Kochur, A.G., Sem, M.F., and Suhorukov, V.L., The dominant pumping mechanism of the 441.6 nm Cd II line in a three-colour hollow-cathode laser, J. Phys. D: Appl. Phys., 1998, vol. 31, no. 1, pp. 50–60.CrossRefGoogle Scholar
  9. 9.
    Ivanov, I.G. Kinetics of active media of He-Zn +, He-Cd +, He-Tl + and Ne-In + Hollow cathode lasers and new laser lines, Proc. SPIE, 2004, vol. 5483, pp. 104–119.CrossRefGoogle Scholar
  10. 10.
    Chebotarev, G.D. and Latush, E.L., Unsaturated gain of spectral lines with a mixed broadening profile, Quantum Electron., 1993, vol. 23, no. 1, pp. 85–87.CrossRefGoogle Scholar
  11. 11.
    Vainer, V.V., Ivanov, I.G., Sem, M.F., and Khasilev, B.Ya., Efficiency of ionic lasers with energy transfer from a buffer gas, Sov. J. Quantum Electron., 1986, vol.16, no. 1, pp. 79–84.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • A. V. Ryazanov
    • 1
  • I. G. Ivanov
    • 1
  • V. E. Privalov
    • 2
  1. 1.Southern Federal UniversityRostov-na-DonuRussia
  2. 2.Saint Petersburg State Politechnic UniversitySaint PetersburgRussia

Personalised recommendations