Optical Memory and Neural Networks

, Volume 20, Issue 1, pp 7–22

Photorefractive properties enhancement of doped bismuth sillenite crystals



The influence of transition metal ions Ru, Co and Co combination with Al on the light-induced and holographic properties of Bi12SiO20 (BSO) crystals is studied. A significant enhancement of the response time is detected at 633 nm when the crystals are simultaneously exposed with green light, i.e. by optical excitation energy close to the location of the main photorefractive center in sillenite structure. Furthermore, prolonged read-out process is detected in Ru-doped BSO, probably due to the Ru ability to exist in three valence states simultaneously, among which some may appear only after appropriate illumination. A possibility to control the electron-hole competition in BSO: Co + Al crystal, due to the charge compensation, is demonstrated. A theoretical model is proposed to explain the complicated holographic behavior.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Photorefractive Materials and Their Applications, Gunter, P. and Huignard, J.-P., Eds., Springer, 2007.Google Scholar
  2. 2.
    Arizmendi, L., Cabrera, J., and Agullo-Lopez, F., Materials Properties and Photorefractive behavior of BSO Family Crystals, Int. J. Optoelectonics, 1992, vol. 7, pp. 149–180.Google Scholar
  3. 3.
    Kamshilin, A.A., Romashko, R.V., and Kulchin, Y.N., Adaptive Interferometry with Photorefractive Crystals, J. Appl. Phys., 2009, vol. 105, pp. 031101–031111.CrossRefGoogle Scholar
  4. 4.
    Barbosa, E.A., Preto, A.O., Silva, D.M., Carvalho, J.F., and Morimoto, N.I., Denisiuk-Type Reflection Holography Display with Sillenite Crystals for Imaging and Interferometry of Small Objects, Opt. Commun., 2008, vol. 281, pp. 408–414.CrossRefGoogle Scholar
  5. 5.
    Caroena, G., Mori, M., Gusualdi, M.R.R., Liberti, E.A., Ferrara, E., and Muramatsu, M., Mastication Effort Study Using Photorefractive Holographic Interferometry Technique, J. Biomechanics, 2010, vol. 43, pp. 680–686.CrossRefGoogle Scholar
  6. 6.
    Georges, M.P., Scauflaire, V.S., and Lemare, P.C., Compact and Portable Holographic Camera Using Photorefractive Crystals. Application in Various Metrological Problems, Appl. Phys. B, 2001, vol. 72, pp. 761–765.Google Scholar
  7. 7.
    Barbosa, E.A., Holographic Imaging with Multimode, Large Free Spectral Range Lasers in Photorefractive Sillenite Crystals, Appl. Phys. B., 2005, vol. 80, pp. 345–350.CrossRefGoogle Scholar
  8. 8.
    Barbosa, E.A., Verzini, R., and Carvalho, J.F., Multi-Wavelength Holography in Bi12TiO20 Crystals: Application in Refractometry, Opt. Commun., 2006, vol. 263, pp. 189–196.CrossRefGoogle Scholar
  9. 9.
    Gospodinov, M., Haussuhl, S., Sveshtarov, P., Dobreva, S., and Sampil, A., Growth and Physical Properties of Bismuth Titanate Crystals, Mat. Res. Bulletin, 1992, vol. 27, pp. 1415–1421.CrossRefGoogle Scholar
  10. 10.
    Skorikov, V.M., Kargin, Yu.F., Egorysheva, A.V., Volkov, V.V., and Gospodinov, M., Growth of Sillenite-Structure Single Crystals, Inorg. Mater., 2005, vol. 41, pp. S24–S46.CrossRefGoogle Scholar
  11. 11.
    Oberschmid, R., Absorption Centers of Bi12GeO20 and Bi12SiO20 Crystals, Phys. Stat. Solidi A, 1985, vol. 89, pp. 263–270.CrossRefGoogle Scholar
  12. 12.
    Grabmaier, B.C. and Oberschmid, R., Properties of Pure and Doped Bi12GeO20 and Bi12SiO20 Crystals, Phys. Stat. Solidi A, 1986, vol. 96, pp. 199–210.CrossRefGoogle Scholar
  13. 13.
    Frejlich, J., Montenegro, R., Inocente-Junior, N.R., dos Santos, P.V., Launay, J.C., Longeaud, Ch., and Carvalho, J.F., Phenomenological Characterization of Photoactive Centers in Bi12TiO20 Crystals, J. Appl. Phys., 2007, vol. 101, p. 043101.CrossRefGoogle Scholar
  14. 14.
    Matusevich, A., Tolstik, A., Kisteneva, M., Shandarov, S., Matusevich, V., Kiessling, A., and Kowarschik, R., Investigation of Photo-Induced Absorption in a Bi12TiO20 Crystal, Appl. Phys. B, 2008, vol. 92, pp. 219–224.CrossRefGoogle Scholar
  15. 15.
    Skorikov, V.M., Milenov, T.I., Egorysheva, A.V., Rafailov, P.M., Dudkina, T.D., Veleva, M.N., Vasil’ev, A.Ya., and Gospodinov, M.M., An Optical Excitation Study of Ru-, Rh-, Re- and Os-Doped Bi12SiO20 Crystals, Phys. Stat. Solidi B, 2007, vol. 244, pp. 3292–3296.CrossRefGoogle Scholar
  16. 16.
    Marinova, V., Optical Properties of Bi12TiO20 Doped with Al, P, Ag, Cu, Co and co-Doped with Al + P Single Crystals, Opt. Mat., 2000, vol. 15, pp. 149–158.CrossRefGoogle Scholar
  17. 17.
    Marinova, V., Veleva, M., Petrova, D., Kourmoulis, I., Papazoglou, D., Apostolidis, A., Vanidhis, E., and Deliolanis, N., Optical Properties of Bi12SiO20 Single Crystals Doped with 4d and 5d Transition Elements, J. Appl. Phys., 2001, vol. 89, pp. 2686–2689.CrossRefGoogle Scholar
  18. 18.
    Marinova, V., Sainov, V., Lin, S.H., and Hsu, K.Y., Dielectric Properties of Doped Bi12TiO20 Single Crystals, Jpn. J. Appl. Phys., 2002, vol. 41, no. 3B, pp. 1860–1863.CrossRefGoogle Scholar
  19. 19.
    Mosquera, L., de Oliveira, I., Frejlich, J., Hernandes, A.C., Lanfredi, S., and Carvalho, J.F., Dark Conductivity, Photoconductivity and Light-Induced Absorption in Photorefractive Sillenite Crystals, J. Apll. Phys., 2001, vol. 90, p. 2635.CrossRefGoogle Scholar
  20. 20.
    Frejlich, J., Montenegro, R., dos Santos, T.O., and Carvalho, J.F., Characterziation of Photorefractive Undoped and Doped Sillenite Crystals Using Holographic and Photoconductive Techniques, J. Optics A: Pure Appl. Opt., 2008, vol. 10, p. 104005.CrossRefGoogle Scholar
  21. 21.
    McCullough, J.S., Harmon Bauer, A.L., Hunt, C.A., and Martin, J.J., Persistent Refractive Index Gratings in Bismuth Germanium Oxide Doped with Chromium, J. Appl. Phys., 2001, vol. 90, pp. 6022–6025.CrossRefGoogle Scholar
  22. 22.
    McCullough, J.S., Harmon Bauer, A.L., Hunt, C.A., and Martin, J.J., Photochromic Response of Bismuth Germanium Oxide Doped with Chromium, J. Appl. Phys., 2001, vol. 90, pp. 6017–6020.CrossRefGoogle Scholar
  23. 23.
    Miteva, M., Dushkina, N., and Gospodinov, M., Nostationary Amplification of the Holographic Recording in Doped BSO Crystals: a Base for Photorefractive Incoherent-to-Coherent Optical Conversion, Appl. Optics, 1995, vol. 34, pp. 4083–4085.CrossRefGoogle Scholar
  24. 24.
    Marinova, V., Hsieh, M.L., Lin, S.H., and Hsu, K.Y., Effect of Ruthenium Doping on the Optical and Photo-refractive Properties of Bi12TiO20 Single Crystals, Opt. Commun., 2002, vol. 203, pp. 377–384.CrossRefGoogle Scholar
  25. 25.
    Marinova, V., Lin, S.H., Sainov, V., Gospodinov, M., and Hsu, K.Y., Light-Induced Properties of Ru-Doped Bi12TiO20 Crystals, Journal of Optics A: Pure Applied Optics, 2003, vol. 5, pp. S500–S506.CrossRefGoogle Scholar
  26. 26.
    Ramaz, F., Rakitina, L., Gospodinov, M., and Briat, B., Photorefrcative and Photochromic Properties of Ruthenium—Doped Bi12SiO20, Opt. Mat., 2005, vol. 27, pp. 1547–1554.CrossRefGoogle Scholar
  27. 27.
    Petrova, D., Gospodinov, M., and Sveshtarov, P., Growth and Optical Properties of Bi12SiO20 Doped with First Row Transition Metal and Aluminium, Mat. Res. Bulletin, 1995, vol. 30, pp. 1201–1206.CrossRefGoogle Scholar
  28. 28.
    Donnermeyer, A., Vogt, H., and Kratzig, E., Complimentray Gratings Due to Electron and Hole Conductivity in Aluminium-Doped Bismuth Titanium Oxide Crystals, Phys. Stat. Solidi A, 2003, vol. 200, pp. 451–456.CrossRefGoogle Scholar
  29. 29.
    Donnermeyer, A. and Kratzig, E., Influence of Light Intensity and Crystal Temeprature on Photorefrative Charge Compensation Processesin Al-Doped Bi12TiO20 Crystals, Phys. Stat. Solidi A, 2004, vol. 201, pp. R9–R11.CrossRefGoogle Scholar
  30. 30.
    Sveshtarov, P. and Gospodinov, M., The Effect of the Interface Shape on Automatic Czochralski Weight Diameter Control System Performance, J. Cryst. Growth, 1991, vol. 113, pp. 186–208.CrossRefGoogle Scholar
  31. 31.
    Reyher, H.J., Hellwig, U., and Thiemann, O., Optically Detected Magnetic Resonance of the Bismuth-on-Metal-Site Intrinsic Defect in Photorefractive Sillenite Crystals, Phys. Rev. B, 1993, vol. 47, pp. 5638–5645.CrossRefGoogle Scholar
  32. 32.
    Ahmad, I., Marinova, V., and Goovaerts, E., High-Frequency Electron Paramagnetic Resonance of the Hole Trapped Anti-Site Bismuth Centre in the Photorefractive Bismuth Sillenite Crystals, Phys. Rev. B, 2009, vol. 79, p. 033107.CrossRefGoogle Scholar
  33. 33.
    Delboulbe, A., Fromont, C., Herriau, J.P., Mallick, S., and Huignard, J.-P., Quasi-Nondestructive Readout of Holographically Stored Information in Photorefractive Bi12SiO20 Crystals, Appl. Phys. Lett., 1989, vol. 55, pp. 713–715.CrossRefGoogle Scholar
  34. 34.
    Yeh, P., Introduction to Photorefractive Nonlinear Optics, Wiley Interscience, 1993.Google Scholar
  35. 35.
    Odoulov, S.G., Shcherbin, K.V., and Shumeljuk, A.N., Photorefractive Recording in BTO in the Near Infrared, JOSA B, 1994, vol. 11, pp. 1780–1785.CrossRefGoogle Scholar
  36. 36.
    Basaw, M.C., Ma, T.-P., Barker, R.C., Mroczkowski, S., and Dube, R.R., Introduction, Revelation and Evolution of Complementary Gratings in Photorefractive Bismuth Silicon Oxide, Phys. Rev. B, 1990, vol. 42, pp. 5641–5648.CrossRefGoogle Scholar
  37. 37.
    Marinova, V., Ahmad, I., and Goovaerts, E., Dynamics of Charge Carriers in Ru-Doped Bi12SiO20 Crystals after ns Laser Pulse Excitation, J. Appl. Phys., 2010, vol. 107, p. 113106.CrossRefGoogle Scholar
  38. 38.
    Kukhtarev, N.V., Markov, V.B., Odulov, S.G., Soskin, M.S., and Vinetskii, V.L., Holographic Storage in Electro-Optic Crystals I: Steady State, Ferroelectrics, 1979, vol. 22, pp. 949–960.CrossRefGoogle Scholar
  39. 39.
    Buse, K., Adibi, A., and Psaltis, D., Non-volatile holographic storage in Doubly Doped Lithium Niobate Crystals, Nature, 1998, vol. 393, pp. 665–668.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • Vera Marinova
    • 1
    • 3
  • Shiuan Huei Lin
    • 2
  • Ken Yuh Hsu
    • 3
  1. 1.Institute of Optical Materials and TechnologiesBulgarian Academy of ScienceSofiaBulgaria
  2. 2.Department of ElectrophysicsNational Chiao Tung UniversityHsinchuTaiwan
  3. 3.Photonics DepartmentNational Chiao Tung UniversityHsinchuTaiwan

Personalised recommendations