Optical Memory and Neural Networks

, Volume 20, Issue 1, pp 43–58

Prognosis of dynamical systems behavior based on cerebellar-type neural technologies

  • W. L. Dunin-Barkowski
  • Yu. A. Flerov
  • L. L. Vyshinsky
Article

Abstract

We consider a system of multidimensional data prognosis based on the supposed mechanics of short-term prediction of the data in the cerebellum. Presented are the general description of the system, the selected method of numerical calculations and examples of testing the system for the prognosis of data in test mathematical problems, in transportation problem and in energy consumption prediction. Test results have demonstrated that have demonstrated that the cerebellar-based module of data prognosis might an effective and practical tool for multidimensional predictions.

Keywords

artificial neural networks models of cerebellum multidimensional data prognosis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baestaens, D.E., Van den Bergh, W.M., and Wood, D., Neural Network. Solution for Trading in Financial Markets, Pitman Publishing, 1995.Google Scholar
  2. 2.
    Barto, A.G., Fag, A.H., Sitkoff, N., and Houk, J.C., A Cerebellar Model of Timing and Prediction in the Control of Reaching, Neural Computation, 1999, vol. 11, pp. 565–594.CrossRefGoogle Scholar
  3. 3.
    Cherkassky, V. and Muller, F., Learning from Data: Concepts, Theory, and Methods, New York: Wiley, 1998, p. 600.MATHGoogle Scholar
  4. 4.
    Courchesne, E. and Allen, G., Prediction and Preparation, Fundamental Functions of the Cerebellum, by Eric and Greg Allen, Learning Memory, New York: Cold Spring Harbor Laboratory Press, 1997, vol. 4, no. 1, pp. 1–35.Google Scholar
  5. 5.
    Dunin-Barkowski, W.L., Analysis of Output of All Purkinje Cells Controlled by One Climbing Fiber Cell, Neurocomputing, 2002, vols. 44–46, pp. 391–400.CrossRefGoogle Scholar
  6. 6.
    Dunin-Barkowski, W.L., Theory of the Cerebellum, in Lectures on Neuroinformatics, Moscow: MEPHI, 2010, pp. 14–48 [in Russian].Google Scholar
  7. 7.
    Dunin-Barkowski, W.L. and Osovets, N.B., Hebb-Hopfield Neural Networks Based on One-Dimensional Sets of Neurons States, Neural Processing Lett., 1995, vol. 2, no. 4, pp. 28–31.CrossRefGoogle Scholar
  8. 8.
    Gorban, A.N., Dunin-Barkowski, W.L., Kirdin, A.N., Mirkes, E.M., Novokhodko, A.Yu., Rossiev, D.A., Terekhov, S.A., Senashova, M.Yu., and Tsargorodtsev, V.G., Neuroinformatics, Novosibirsk: Nauka, 1998, p. 296 [in Russian].Google Scholar
  9. 9.
    Haykin, S., Neural Networks and Learning Machines, 3rd ed., New York: Prentice Hall/Pearson, 2008, p. 850.Google Scholar
  10. 10.
    Hoffmann, L.C. and Berry, S.D., Cerebellar Theta Oscillations are Synchronized During Hippocampal Theta-Contingent Trace Conditioning, Proc. Natl. Acad. Sci. U. S. A., 2009, vol. 106, pp. 21371–21376.CrossRefGoogle Scholar
  11. 11.
    Hopfield, J.J., Neural Networks and Physical Systems with Emergent Collective Computational Abilities, Proc. Nat. Acad. Sci. U. S. A., 1982, vol. 79, pp. 2554–2558.CrossRefMathSciNetGoogle Scholar
  12. 12.
    Hopfield, J.J., Neurodynamics of Mental Exploration, Proc. Nat. Acad. Sci. U. S. A., 2010, vol. 107, pp. 1648–1653.CrossRefGoogle Scholar
  13. 13.
    Hopfield, J.J. and Brody, C.D., What is Movement? Transient Synchrony as a Collective Mechanism for Spatiotemporal Integration, Proc. Nat. Acad. Sci. U. S. A., 2001, vol. 98, pp. 1282–1287.CrossRefGoogle Scholar
  14. 14.
    Ito, M., Cerebellar Long-Term Depression: Characterization, Signal Transduction, and Functional Roles, Physiol. Rev., 2001, vol. 81, no. 3, pp. 1143–1195.Google Scholar
  15. 15.
    Ito, M., Control of Mental Activities by Internal Models in the Cerebellum, Nature Rev. Neurosci., 2008, vol. 9, pp. 304–313.CrossRefGoogle Scholar
  16. 16.
    Kawato, M., Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B., and Yoshioka, T., Human Cerebellar Activity Reflecting an Acquired Internal Model of a New Tool, Nature, 2000, vol. 403, pp. 192–195.CrossRefGoogle Scholar
  17. 17.
    Lutherer, L.O., Everse, S.J., and Williams, J.L., Neurons of the Rostral Fastigial Nucleus are Responsive to Cardiovascular and Respiratory Challenges, J. Autonom. Nerv. Syst., 1989, vol. 27, pp. 101–112.CrossRefGoogle Scholar
  18. 18.
    Mauk, M. and Donegan, N.H., A Model of Pavlovian Eyelid Conditioning Based on the Synaptic Organization of the Cerebellum, Learning Memory, 1997, vol. 3, pp. 130–158.CrossRefGoogle Scholar
  19. 19.
    Panchin, Y.V., Cellular Mechanism for the Temperature Sensitive Spatial Orientation in Clione, Neuroreport, 1997, vol. 8, no. 15, pp. 3345–3348.CrossRefGoogle Scholar
  20. 20.
    Spoelstra, J., Schweighofer, N., and Arbib, M., Cerebellar Learning of Accurate Predictive Control for Fastreaching Movements, Biol. Cybernetics, 2000, vol. 82, pp. 321–333.CrossRefGoogle Scholar
  21. 21.
    Widiputra, H., Pears, R., Serguleva, A., and Kasabov, N., Dynamic Interaction Networks in Modelling and Predicting the Behaviour of Multiple Interactive Stock Markets, Intelligent Systems in Accounting, Finance Management, 2009, vol. 16, pp. 189–205.Google Scholar
  22. 22.
    Wikgren, L., Nokia, M.S., and Penttonen, M., Hippocampo-Cerebellar Theta Band Phase Synchrony in Rabbits, Neurosci., 2010, vol. 165, no. 4, pp. 1538–1545.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • W. L. Dunin-Barkowski
    • 1
  • Yu. A. Flerov
    • 2
  • L. L. Vyshinsky
    • 2
  1. 1.Department of Neuroinformatics, Center of Optical Neural TechnologiesScientific Research Institute for System AnalysisMoscowRussia
  2. 2.A.A. Dorodnitsyn Computing CenterRussian Academy of SciencesMoscowRussia

Personalised recommendations