Optical Memory and Neural Networks

, Volume 20, Issue 1, pp 59–70 | Cite as

Polarization-singular structure of laser images of stratified phase-inhomogeneous layers for the diagnostics and classification of their optical properties

  • Yu. A. Ushenko
  • I. Z. Misevich
  • O. Yu. Telenga
  • Yu. Ya. Tomka
  • A. O. Karachevtsev
Article

Abstract

Presented in this work are the results of investigation aimed at analysis of coordinate distributions for azimuths and ellipticity of polarization (polarization maps) in laser images of three types of phase-inhomogeneous layers, namely: rough, ground and bulk scattering layers. To characterize polarization maps for all the types of phase-inhomogeneous layers, the authors have offered to use three groups of parameters: statistical moments of the first to the fourth orders, autocorrelation functions and logarithmic dependences for power spectra related to distributions of azimuths and ellipticity of polarization inherent to phase-inhomogeneous layers laser images. Ascertained are the criteria for diagnostics and classification of phase-inhomogeneous layers optical properties.

Keywords

polarization rough surface phase-inhomogeneous layer statistic moments autocorrelation polarization singularity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Xueding Wang, Gang Yao, and Lihong V. Wang, Monte Carlo Model and Single-Scattering Approximation of Polarized Light Propagation in Turbid Media Containing Glucose, Appl. Opt., 2002, vol. 41, pp. 792–801.CrossRefGoogle Scholar
  2. 2.
    Xueding Wang and Lihong V. Wang, Propagation of Polarized Light in Birefringent Turbid Media: a Monte Carlo Study, J. Biomed. Opt., 2002, vol. 7, pp. 279–290.CrossRefGoogle Scholar
  3. 3.
    Gang Yao and Lihong V. Wang, Two-Dimensional Depth-Resolved Mueller Matrix Characterization of Biological Tissue by Optical Coherence Tomography, Opt. Lett., 1999, vol. 24, pp. 537–539.CrossRefGoogle Scholar
  4. 4.
    Demos, S.G. and Alfano, R.R., Optical Polarization Imaging, Appl. Opt., 1997, vol. 36, pp. 150–155.CrossRefGoogle Scholar
  5. 5.
    Alexander G. Ushenko and Vasilii P. Pishak, Laser Polarimetry of Biological Tissue: Principles and Applications, in Handbook of Coherent-Domain Optical Methods: Biomedical Diagnostics, Environmental and Material Science, Valery V. Tuchin, Ed., Kluwer Academic, 2004, vol. 1, pp. 93–138.Google Scholar
  6. 6.
    Johannes F. de Boer, Thomas E. Milner, Martin J. C. van Gemert, and J. Stuart Nelson, Two-Dimensional Birefringence Imaging in Biological Tissue by Polarization-Sensitive Optical Coherence Tomography, Opt. Lett., 1997, vol. 22, pp. 934–936.CrossRefGoogle Scholar
  7. 7.
    Shuliang Jiao, Gang Yao, and Lihong V. Wang, Depth-Resolved Two-Dimensional Stokes Vectors of Backscattered Light and Mueller Matrices of Biological Tissue Measured with Optical Coherence Tomography, Appl. Opt., 2000, vol. 39, pp. 6318–6324.CrossRefGoogle Scholar
  8. 8.
    Shuliang Jiao and Lihong V. Wang, Two-Dimensional Depth-Resolved Mueller Matrix of Biological Tissue Measured with Double-Beam Polarization-Sensitive Optical Coherence Tomography, Opt. Lett., 2002, vol. 27, pp. 101–103.CrossRefGoogle Scholar
  9. 9.
    Wang, X., Wang, L.-H., Sun, C.-W., and Yang, C.C., Polarized Light Propagation Through the Scattering Media: Time-Resolved Monte Carlo and Experiments, J. Biomed. Opt., 2003, vol. 8, pp. 608–617.CrossRefGoogle Scholar
  10. 10.
    de Boer, J.F. and Milner, T.E., Review of Polarization Sensitive Optical Coherence Tomography and Stokes Vector Determination, J. Biomed. Opt., 2002, vol. 7, pp. 359–371.CrossRefGoogle Scholar
  11. 11.
    Ducros, M.G., de Boer, J.F., Huang, H.E., Chao, L.C., Chen, Z.P., Nelson, J.S., Milner, T.E., and Rylander, H.G., Polarization Sensitive Optical Coherence Tomography of the Rabbit Eye, IEEE J. Select. Top. Quant. Electron., 1999, vol. 5, pp. 1159–1167.CrossRefGoogle Scholar
  12. 12.
    de Boer, J.F., Milner, T.E., and Nelson, J.S., Two Dimensional Birefringence Imaging in Biological Tissue Using Phase and Polarization Sensitive Optical Coherence Tomography in Trends in Optics and Photonics (TOPS): Advances in Optical Imaging and Photon Migration, Washington: OSA, 1998.Google Scholar
  13. 13.
    Everett, M.J., Shoenenberger, K., Colston, B.W., and da Silva, L.B., Birefringence Characterization of Biological Tissue by Use of Optical Coherence Tomography, Opt. Lett., 1998, vol. 23, pp. 228–230.CrossRefGoogle Scholar
  14. 14.
    Ushenko, A.G., Misevich, I.Z., Istratiy, V., Bachyns’ka, I., Peresunko, A.P., Numan Omar Kamal, and Moiysuk, T.G., Evolution of Statistic Moments of 2D-Distributions of Biological Liquid Crystal Net Mueller Matrix Elements in the Process of Their Birefringent Structure Changes, Advances in Optical Technologies, 2010, Article ID 423145, 2010.Google Scholar
  15. 15.
    Angelsky, O.V., Ushenko, A.G., and Ushenko, Ye.G., Investigation of the Correlation Structure of Biological Tissue Polarization Images During the Diagnostics of Their Oncological Changes, Phys. Med. Biol., 2005, vol. 50, pp. 4811–4822.CrossRefGoogle Scholar
  16. 16.
    Ushenko, A.G., Laser Polarimetry of Polarization-Phase Statistical Moments of the Object Field of Optically Anisotropic Scattering Layers, Optics Spectrosc., 2001, vol. 91, pp. 313–316.CrossRefGoogle Scholar
  17. 17.
    Ushenko, A.G., Correlation Processing and Wavelet Analysis of Polarization Images of Biological Tissues, Optics and Spectroscopy, 2002, vol. 91, pp. 773–778.CrossRefGoogle Scholar
  18. 18.
    Dubolazov, O.V., Ushenko, A.G., Bachynsky, V.T., Peresunko, A.P., and Vanchulyak, O.Ya., On the Feasibilities of Using the Wavelet Analysis of Mueller Matrix Images of Biological Crystals, Advances in Optical Technologies, 2010, Article ID 162832, 2010.Google Scholar
  19. 19.
    Angelsky, O.V., Maksimyak, P.P., and Perun, T.O., Dimensionality in Optical Fields and Signals, Appl. Opt., 1993, vol. 32, pp. 6066–6071.CrossRefGoogle Scholar
  20. 20.
    Angelsky, O.V., Maksimyak, P.P., and Hanson, S., The Use of Optical-Correlation Techniques for Characterizing Scattering Object and Media, Bellingham: SPIE Press PM71, 1999.Google Scholar
  21. 21.
    Angelsky, O.V., Maksimyak, P.P., and Perun, T.O., Optical Correlation Method for Measuring Spatial Complexity in Optical Fields, Opt. Lett., 1993, vol. 18, pp. 90–92.CrossRefGoogle Scholar
  22. 22.
    Angelsky Oleg. V., Burkovets Dmitriy N., Kovalchuk Alexander V., and Hanson Steen G., Fractal Description of Rough Surfaces, Appl. Opt., 2002, vol. 41, pp. 4620–4629.CrossRefGoogle Scholar
  23. 23.
    Freund Isaac, Soskin Marat S., and Mokhun Alex I., Elliptic Critical Points in Paraxial Optical Fields, Optics Commun., 2002, vol. 207, pp. 223–253.CrossRefGoogle Scholar
  24. 24.
    Soskin, M.S., Denisenko, V., and Freund, I., Optical Polarization Singularities and Elliptic Stationary Points, Opt. Lett., 2003, vol. 28, pp. 1475–1477.CrossRefGoogle Scholar
  25. 25.
    Dennis, M.R., Polarization Singularities in Paraxial Vector Fields: Morphology and Statistics, Opt. Commun., 2002, vol. 213, pp. 201–221.CrossRefGoogle Scholar
  26. 26.
    Soskin, M.S., Denisenko, V.G., and Egorov, R.I., Singular Elliptic Light Fields: Genesis of Topology and Morphology, Proc. SPIE., 2006, vol. 6254, p. 625404.CrossRefGoogle Scholar
  27. 27.
    Nye, J.F., Lines of Circular Polarization in Electromagnetic Wave Fields, Proc. R. Soc. London, Ser. A., 1983, vol. 389, pp. 279–290.CrossRefMathSciNetGoogle Scholar
  28. 28.
    Flossmann, F., Schwarz, U.T., Maier, M., and Dennis, M.R., Polarization Singularities from Unfolding an Optical Vortex Through a Birefringent Crystal, Phys. Rev. Lett., 2005, vol. 95, p. 253901.CrossRefGoogle Scholar
  29. 29.
    Flossmann, F., Schwarz, U.T., Maier, M., and Dennis, M.R., Stokes Parameters in the Unfolding of an Optical Vortex Through a Birefringent Crystal, Opt. Express., 2006, vol. 14, pp. 11402–11411.CrossRefGoogle Scholar
  30. 30.
    Bliokh, K.Y., Niv, A., Kleiner, V., and Hasman, E., Singular Polarimetry: Evolution of Polarization Singularities in Electromagnetic Waves Propagating in a Weakly Anisotropic Medium, Opt. Express., 2008, vol. 16, pp. 695–709.CrossRefGoogle Scholar
  31. 31.
    Angelsky, O., Besaha, R., Mokhun, A., Mokhun, I., Sopin, M., Soskin, M., and Vasnetsov, M., Singularities in Vectoral Fields, SPIE Proc., 1999, vol. 3904, pp. 40–55.CrossRefGoogle Scholar
  32. 32.
    Freund, I., Mokhun, A.I., Soskin, M.S., Angelsky, O.V., and Mokhun, I.I., Stokes Singularity Relations, Opt. Let., 2002, vol. 27, pp. 545–547.CrossRefGoogle Scholar
  33. 33.
    Angelsky, O., Mokhun, A., Mokhun, I., and Soskin, M., The Relationship between Topological Characteristics of Component Vortices and Polarization Singularities, Optics Commun., 2002, vol. 207, pp. 56–57.CrossRefGoogle Scholar
  34. 34.
    Berry, M.V. and Dennis, M.R., Polarization Singularities in Isotropic Random Vector Waves, Proc. R. Soc. Lond. A., 2001, vol. 457, pp. 141–155.CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Angelsky Oleg V., Ushenko Alexander G., Ushenko Yevheniya G., and Tomka Yuriy Y., Polarization Singularities of Biological Tissues Images, J. Biomed. Opt., 2006, vol. 11, p. 054030.CrossRefGoogle Scholar
  36. 36.
    Angelsky, O.V., Ushenko, A.G., Ushenko, Yu.A., and Ushenko, Ye.G., Polarization Singularities of the Object Field of Skin Surface, J. Phys. D: Appl. Phys., 2006, vol. 39, pp. 3547–3558.CrossRefGoogle Scholar
  37. 37.
    Angelsky, O.V., Ushenko, A.G., Angelska, A.O., and Ushenko, Yu.A., Correlation- and Singular-Optical Approaches in Diagnostics of Polarization Inhomogeneity of Coherent Optical Fields from Biological Tissues, Ukr. J. Phys. Opt., 2007, vol. 8, pp. 105–123.Google Scholar
  38. 38.
    Ushenko, A.G., Stokes-Correlometry of Biotissues, Laser Phys., 2000, vol. 10, pp. 1286–1292.Google Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • Yu. A. Ushenko
    • 1
  • I. Z. Misevich
    • 2
  • O. Yu. Telenga
    • 2
  • Yu. Ya. Tomka
    • 2
  • A. O. Karachevtsev
    • 2
  1. 1.Correlation Optics DepartmentChernivtsi National UniversityChernivtsiUkraine
  2. 2.Optics and Spectroscopy DepartmentChernivtsi National UniversityChernivtsiUkraine

Personalised recommendations