Optical Memory and Neural Networks

, Volume 19, Issue 4, pp 273–278 | Cite as

Subwavelength focusing with a Mikaelian planar lens

This Issue is Dedicated to Memory of Academician Andrey L. Mikaelyan


We show that an arbitrary TE-polarized light field propagating in a Mikaelian secant (MS) planar lens can be decomposed into modes described by the Jacobi polynomials. This light field will be periodically repeated at the Talbot length and focused with a half-Talbot length period. An analytical expression for the width of the focal spot has been obtained. The MS lens allows obtaining a focal spot of width equal to the diffraction limit in the medium. The MS lens has been fabricated as a planar photonic crystal lens in a silicon film for wavelength 1.55 μm, and its focusing properties have been demonstrated by visible light (532 nm) interference fringes.


Mikaelian secant lens SELFOC—Mikaelian waveguide waveguide modes Jacobi polynomials photonic crystal lens 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mikaelian, A.L., Application of Stratified Medium for Waves Focusing, Dokl. Akad. Nauk SSSR, 1951, vol. 81, pp. 569–571.Google Scholar
  2. 2.
    Feld, Y.N. and Benenson, L.S., Antenna and Fiber Design, Izdatelstvo VVIA imeni Zhukovskogo, 1959, vol. 2.Google Scholar
  3. 3.
    Zelkin, E.G. and Petrova, R.A., Lens Antennas, Moscow: Sov. Radio, 1974.Google Scholar
  4. 4.
    Zhuk, M.S. and Molotschkov, U.B., The Design of Scanning and Widebandwidth Lens Antennas and Fibers, Moscow: Energia, 1973.Google Scholar
  5. 5.
    Mikaelian, A.L. and Prokhorov, A.M., Self-Focusing Media with Variable Index of Refraction, in Progress in Optics XVII, Wolf, E., Ed., Amsterdam: North-Holland, 1980, pp. 283–346.Google Scholar
  6. 6.
    Mikaelian, A.L., General Method of Inhomogeneous Media Calculation by the Given Ray Traces, Dokl. Acad. Nauk, 1952, vol. 83, no. 2, p. 219.Google Scholar
  7. 7.
    Mikaelian, A.L., Method of Calculation of Inversion Problem of Geometrical Optics, Dokl. Acad. Nauk, 1952, vol. 86, no. 5, p. 963.Google Scholar
  8. 8.
    Mikaelian, A.L., Using of Coordinate System for Calculation of Media Characteristics for the Given Ray Traces, Dokl. Acad. Nauk, 1952, vol. 86, no. 6, p. 1101.Google Scholar
  9. 9.
    Rawson, G., Herriott, D.R., and MacKenne, J., Analysis of Refractive Index Distributions in Cylindrical, Gradient-Index Glass Rods Used as Image Relays, Appl. Opt., 1970, vol. 3, pp. 753–759.CrossRefGoogle Scholar
  10. 10.
    Rawson, G., Herriott, D.R., and MacKenne, J., Gradient-Index Tapered Hyperbolic Second Planar Waveguide for Focusing, Collimation and Beam-Size Control, J. Opt. Soc. Am. A, 1997, vol. 14, pp. 1754–1759.Google Scholar
  11. 11.
    Linares, J. and Gomez-Reino, C., Optical Propagator in a Graded-Index Medium with a Hyperbolic Secant Refractive-Index Profile, Appl. Opt., 1994, vol. 33, pp. 3427–3431.CrossRefGoogle Scholar
  12. 12.
    Streifer, W. and Kurz, C.N., Scalar Analysis of Radially Inhomogeneous Guiding Media, J. Opt. Soc. Am., 1967, vol. 57, pp. 779–786.CrossRefGoogle Scholar
  13. 13.
    Kornhauser, E.T., Streifer, W., and Kurz, C.N., Modal Solution of a Point Source in a Strongly Focusing Medium, Radio Sci., 1967, vol. 2, pp. 299–310.Google Scholar
  14. 14.
    Silberberg, Y. and Levy, V., Modal Treatment of an Optical Filter with a Modified Hyperbolic Secant Index Distribution, J. Opt. Soc. Am. A, 1979, vol. 69, pp. 960–963.CrossRefGoogle Scholar
  15. 15.
    Van Duin, C.A., Boersma, J., and Sluijter, F.W., TM-Modes in a Planar Optical Waveguide with a Graded Index of the Symmetric Epstein Type, Wave Motion, 1986, vol. 8, pp. 175–190.MATHCrossRefGoogle Scholar
  16. 16.
    Hewak, D.W. and Lit, J.W.Y., Solution Deposited Optical Waveguide Lens, Appl. Opt., 1989, vol. 28, pp. 4190–4198.CrossRefGoogle Scholar
  17. 17.
    Rivas-Moscoso, J.M., Nieto, D., Gomez-Reino, C., and Fernandez-Pousa, C.R., Focusing of Light by Zone Plates in Selfoc Gradient-Index Lenses, Opt. Lett., 2003, vol. 28, pp. 2180–2182.CrossRefGoogle Scholar
  18. 18.
    Wang, X., Ren, Z.F., and Kempe, K., Unrestricted Superlensing in a Triangular Twodimensional Photonic Crystal, Opt. Express, 2004, vol. 12, pp. 2919–2924.CrossRefGoogle Scholar
  19. 19.
    Wu, Q., Gibbons, J.M., and Park, W., Graded Negative Index Lens by Photonic Crystal, Opt. Express, 2008, vol. 16, no. 21, pp. 16 941–16 949.Google Scholar
  20. 20.
    Minin, I.V., Minin, O.V., Triandafilov, Y.R., and Kotlyar, V.V., Subwavelength Diffractive Photonic Crystal Lens, Prog. Electromag. Res. B, 2008, vol. 7, pp. 257–264.CrossRefGoogle Scholar
  21. 21.
    Minin, I.V., Minin, O.V., Triandafilov, Y.R., and Kotlyar, V.V., A Photonic Crystal Mikaelian Lens, Opt. Mem. Neural Networks, 2008, vol. 17, pp. 1–7.CrossRefGoogle Scholar
  22. 22.
    Kameda, S., Mizutani, A., and Kikuta, H., Numerical Study on a Micro Prizm and Micro Lenses with Metal-Dielectric Multilayered Structures, J. Opt. Soc. Am. A, 2010, vol. 27, pp. 749–756.CrossRefGoogle Scholar
  23. 23.
    Schwarz, J.J., Stavrakis, S., and Quake, S.R., Colloidal Lenses Allow High-Temperature Single-Molecule Imaging and Improve Fluorophore Photostability, Nature Nanotechnology, 2010, vol. 5, pp. 127–132.CrossRefGoogle Scholar
  24. 24.
    Kotlyar, M.I., Triandafilov, Y.R., Kovalev, A.A., Soifer, V.A., Kotlyar, M.V., and O’Faolain, L., Photonic Crystal Lens for Coupling Two Waveguides, Appl. Opt., 2009, vol. 48, pp. 3722–3730.CrossRefGoogle Scholar
  25. 25.
    Handbook of Mathematical Functions, Abramowitz, M., and Stegun, I.A., Eds., Washington: National Bureau of Standards, 1964.MATHGoogle Scholar
  26. 26.
    Prudnikov, A.P., Brychkov, Yu.A., and Marychev, O.I., Integrals and Series. Special Functions, Moscow: Nauka Puiblishers, 1983 [in Russian].MATHGoogle Scholar
  27. 27.
    Prudnikov, A.P., Brychkov, Yu.A., and Marychev, O.I., Integrals and Series, Moscow: Nauka Puiblishers, 1981 [in Russian].MATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2010

Authors and Affiliations

  • V. V. Kotlyar
    • 1
    • 2
  • A. A. Kovalev
    • 1
    • 2
  • V. A. Soifer
    • 1
    • 2
  1. 1.Laser Measurements LaboratoryImage Processing Systems Institute of the Russian Academy of SciencesSamaraRussia
  2. 2.Technical Cybernetics SubdepartmentS.P. Korolyev Samara State Aerospace UniversitySamaraRussia

Personalised recommendations