Advertisement

Journal of Machinery Manufacture and Reliability

, Volume 47, Issue 6, pp 537–542 | Cite as

Ultrasonic Burnishing of Titanium Alloys

  • V. V. StolyarovEmail author
New Technologies in Mechanical Engineering
  • 1 Downloads

Abstract

This paper presents research results concerning the influence of ultrasonic burnishing on the structure and mechanical properties of ultra-fine grain titanium alloys: commercial pure titanium BT1-0 and an over stoichiometric alloy with the shape memory Ti49.3Ni50.7. It was shown by the methods of optical microscopy and transmission electronic microscopy that in the surface layer of 20 μm thickness, the ultrasonic burnishing in coarse-grained titanium forms a nanostructure with a grain size of 100 nm, and it additionally decreases the size of crystals from 100 to 30 nm in the nanostructural titanium nickelide. The ultrasonic treatment of alloys greatly increases the strength and micro- and nanohardness of the surface layer, decreases the roughness, forms the gradient nanostructure, improves the lifetime, and expands the functionalities of the items.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Valiev, R.Z. and Aleksandrov, I.V., Ob’emnye nanostrukturnye metallicheskie materialy: poluchenie, struktura i svoistva (Bulk Nanostructured Metallic Materials: Production, Structure and Properties), Moscow: Akademkniga, 2007.Google Scholar
  2. 2.
    Edalati, K. and Horita, Z., A review on high-pressure torsion (HPT) from 1935 to 1988, Mater. Sci. Eng. A, 2016, vol. 652, pp. 325–352.CrossRefGoogle Scholar
  3. 3.
    Golovin, Yu.I., Vvedenie v nanotekhniku (Introduction to Nanoengineering), Moscow: Mashinostroenie, 2007.Google Scholar
  4. 4.
    Wua, X., Jiang, P., Chena, L., Yuan, F., and Zhu, Y.T., Extraordinary strain hardening by gradient structure, Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 20, pp. 7197–7201.CrossRefGoogle Scholar
  5. 5.
    Beygelzimer, Y., Estrin, Y., and Kulagin, R., Synthesis of hybrid materials by severe plastic deformation: a new paradigm of SPD processing, Adv. Eng. Mater., 2015, vol. 17. doi doi 10.1002/adem.201500083Google Scholar
  6. 6.
    Wang, Y., Molotnikov, A., Diez, M., Lapovok, R., Kim, H., Wang, J., and Estrin, Y., Gradient structure produced by three roll planetary milling: numerical simulation and microstructural observations, Mater. Sci. Eng. A, 2015, vol. 639, pp. 165–172.CrossRefGoogle Scholar
  7. 7.
    Yurchenko, L.I., Dyupin, A.P., Gunderov, D.V., Valiev, R.Z., et al., Mechanical properties and structure of high-strength nanostructured nickel-titanium alloys subjected to ECAP and rolling, Faz. Perekh., Uporyad. Sost. Novye Mater., El. Zh., 2006, no. 10.Google Scholar
  8. 8.
    Kolobov, Y.R., Manokhina, S.S., Kolobova, A.Yu., et al., Shock-wave-induced grain refinement and phase state modification in coarse-grained and nanocrystalline titanium, Tech. Phys. Lett., 2016, vol. 42, no. 9, pp. 959–962.CrossRefGoogle Scholar
  9. 9.
    Stolyarov, V.V., Ugurchiev, U.Kh., Trubitsyna, I.B., et al., Intensive electroplastic deformation of TiNi alloy, Fiz. Tekh. Vys. Davl., 2006, no. 4, pp. 48–51.Google Scholar
  10. 10.
    Stolyarov, V.V., Deformability and nanostructuring of shape memory TiNi alloys during the electroplastic rolling, Mater. Sci. Eng. A, 2009, vol. 503, pp. 18–20.CrossRefGoogle Scholar
  11. 11.
    Lesyuk, E.A. and Alekhin, V.P., Formirovanie nano- i submikrokristallicheskikh struktur v instrumental’nykh i konstruktsionnykh materialakh i obespechenie ikh termicheskoi stabil’nosti: monografiya (Formation of Nano- and Submicrocrystalline Structures in Instrumental and Structural Materials and Ensuring their Thermal Stability), Moscow: MGIU, 2009.Google Scholar
  12. 12.
    Mordyuk, B. and Prokopenko, G., Ultrasonic impact peening for the surface properties’ management, J. Sound Vib., 2007, vol. 308, pp. 855–866.CrossRefGoogle Scholar
  13. 13.
    Astashev, V.K. and Krupenin, V.L., Nelineinaya dinamika ul’trazvukovykh tekhnologicheskikh protsessov (Nonlinear Dynamics of Ultrasonic Technological Processes), Moscow: MGUP im. Iv. Fedorova, 2016.Google Scholar
  14. 14.
    Klimenov, V.A., Kovalevska, Zh.G., Uvarkin, P.V., et al., Ultrasonic finishing treatment and its influence on coating properties, Fiz. Mezomekh., 2004, vol. 7, spec. iss., pp. 157–160.Google Scholar
  15. 15.
    Lotkov, A.I., Baturin, A.A., Grishkov, V.N., et al., Structural defects and mesorelief of the titanium nichelide surface after severe plastic deformation by an ultrasonic method, Fiz. Mezomekh., 2005, vol. 109, no. 8, pp. 109–112.Google Scholar
  16. 16.
    Shape Memory Alloys: Fundamentals, Modeling and Applications, Brailovski, V., Prokoshkin, S., Terriault, P., and Trochu, F., Eds., Montreal: ETS, Univ. Québec, 2003.Google Scholar
  17. 17.
    Cismasiu, C., Shape Memory Alloys, Croatia: SCIYO, 2010.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Blagonravov Institute of Mechanical EngineeringRussian Academy of Sciences (IMASH RAN)MoscowRussia

Personalised recommendations