Advertisement

Journal of Machinery Manufacture and Reliability

, Volume 47, Issue 6, pp 525–531 | Cite as

Increasing the Strength of Commercial Titanium VT1–0 Using the Method of Severe Plastic Deformation

  • V. V. Latysh
  • I. A. BurlakovEmail author
  • D. M. Zabel’yan
  • A. I. Alimov
  • P. A. Petrov
  • B. A. Stepanov
  • Bach Vu Chong
Reliability, Strength, and Wear Resistance of Machines and Structures
  • 2 Downloads

Abstract

The problem of reduction of the mass of parts due to an increase in the strength characteristics of the material of these parts by forming an ultrafine grain structure using the method of combined severe deformation including multiaxial forging with further upsetting with torsion is solved. The results of mechanical tensile tests and metallographic tests of titanium are presented, as are the thermal processing modes increasing the plasticity while keeping sufficiently high strength characteristics, which allow selecting the thermomechanical processing parameters required for a certain article.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Utyashev, F.Z. and Raab, G.I., Deformatsionnye metody polucheniya i obrabotki ul’tramelkozernistykh i nanostrukturnykh materialov (Deformation Methods for the Preparation and Processing of Ultrafine-Grained and Nanostructured Materials), Ufa: Gilem, 2013.Google Scholar
  2. 2.
    Kandarov, I.V., Formation of a regulated structure in the VT6 alloy to improve the performance properties of gas turbine engine blades, Cand. Sci. (Tech. Sci.) Dissertation, Naberezhnye Chelny: 2016.Google Scholar
  3. 3.
    Sakai, T., Belyakov, A. and Miura, H., Ultrafine grain formation in ferritic stainless steel during severe plastic deformation, Metall. Mater. Trans. A, 2008, vol. 3, no. 9, pp. 2206–2214.CrossRefGoogle Scholar
  4. 4.
    Takaki, S., Tsuchiyama, T., Nakashima, K., Hidaka, H., Kawasaki, K., and Futamura, Yu., Microstructure development of steel during severe plastic deformation, Met. Mater. Int., 2004, vol. 10, pp. 533–539.CrossRefGoogle Scholar
  5. 5.
    Sakai, T., Miura, H., Belyakov, A., Kaibyshev, R., and Jonas, J.J., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Prog. Mater. Sci., 2014, vol. 60, no. 1, pp. 130–207.CrossRefGoogle Scholar
  6. 6.
    Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Bulk nanostructured materials obtained through SPD, Prog. Mater. Sci., 2000, vol. 45, no. 2, pp. 103–189.CrossRefGoogle Scholar
  7. 7.
    Mulyukov, R.R., et al., Sverkhplastichnost’ ul’tramelkozernistykh splavov: eksperiment, teoriya, tekhnologii (Ultraplasticity of Ultrafine-Grained Alloys: Experiment, Theory, Technology), Moscow: Nauka, 2014.Google Scholar
  8. 8.
    Subich, V.N. et al., Shtampovka s krucheniem (Stamping with Torsion), Moscow: MGIU, 2008.Google Scholar
  9. 9.
    Anoshkin, N.F. et al., Titanovye splavy. Metallografiya titanovykh splavov (Titanium Alloys. Metallography of Titanium Alloys), Moscow: Metallurgiya, 1980.Google Scholar
  10. 10.
    Rakov, D.L., Sukhorukov, R.Yu., and Gavrilina, L.V., Analysis and evaluation of technologies and equipment for manufacturing blanks of long hollow shafts of gas turbine engines made of high-temperature nickel and titanium alloys based on morphological approach, Probl. Mashinostr. Optimiz., 2015, no. 4, pp. 136–143.Google Scholar
  11. 11.
    Burlakov, I.A., Valitov, V.A., Ganeev, A.A., Zabel’yan, D.M., Morozov, S.V., Sukhorukov, R.Yu., and Utyashev, F.Z., Modeling the structure formation during hot deforming the billets of the parts of gas-turbine engines made of heat-resistant nickel alloy, J. Mach. Manuf. Reliab., 2016, no. 5, pp. 95–102.Google Scholar
  12. 12.
    Utyashev, F.Z., Sukhorukov, R.Yu., Sidorov, A.A., and Ibragimov, A.R., Mathematical modeling of manufacturing processes of axisymmetric parts for aviation purposes by the method of local deformation, Pis’ma Mater., 2015, no. 5 (2), pp. 175–178.Google Scholar
  13. 13.
    Sukhorukov, R.Yu., Sidorov, A.A., Alimov, A.I., Nagimov, M.I., Mukhtarov, Sh.Kh., and Utyashev, F.Z., Physical and numerical modeling of the process of rolling off of a tapered shaft of aviation purpose, J. Mach. Manuf. Reliab., 2016, vol. 45, no. 6, pp. 538–545.CrossRefGoogle Scholar
  14. 14.
    Rakov, D.L., Sukhorukov, R.Yu., and Gavrilina, L.V., Analysis and evaluation of technologies and equipment for manufacturing blanks of long hollow shafts of gas turbine engines made of high-temperature nickel and titanium alloys based on morphological approach, Probl. Mashinostr. Optimiz., 2015, no. 4, pp. 136–143.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. V. Latysh
    • 1
  • I. A. Burlakov
    • 2
    Email author
  • D. M. Zabel’yan
    • 2
  • A. I. Alimov
    • 3
  • P. A. Petrov
    • 4
  • B. A. Stepanov
    • 4
  • Bach Vu Chong
    • 4
  1. 1.Scientific and Production Association Technopark of Aviation TechnologiesUfaRussia
  2. 2.AO Salyut Scientific and Production Center of Gas Turbine ConstructionMoscowRussia
  3. 3.Bauman Moscow State Technical UniversityMoscowRussia
  4. 4.Moscow Polytechnic UniversityMoscowRussia

Personalised recommendations