Advertisement

Steel in Translation

, Volume 49, Issue 8, pp 522–527 | Cite as

Thermodynamic Modeling of Isotherms of Oxygen Solubility in Liquid Metal of the Fe–Mg–Al–O System

  • G. G. MikhailovEmail author
  • O. V. SamoilovaEmail author
  • L. A. MakrovetsEmail author
  • L. A. SmirnovEmail author
Article
  • 10 Downloads

Abstract

In this paper, we studied the interaction of magnesium and aluminum dissolved in liquid iron with oxygen, which is an important problem for choosing the optimal parameters of steel refining and casting. The relevance of the study is determined by the possibility and conditions for the formation of adverse refractory particles of magnesium oxide and magnesian spinel in the melt. We performed the thermodynamic modeling of phase equilibria realized in the liquid metal of the Fe–Mg–O, Fe–Al–O, and Fe–Mg–Al–O systems in the temperature range of 1550–1650°C. The calculation was carried out using a technique for constructing the surface of the component solubility in a metal, which associates quantitative changes in the liquid metal composition with changes in the composition of the interaction products of molten metal components. The modeling method was based both on the use of equilibrium constants of reactions occurring between the components of the studied systems in the selected temperature range and on the account of the values ​​of the first-order interaction parameters (according to Wagner) of elements in liquid iron. To simulate the activities of an oxide melt conjugated with a metal melt, the approximation of the theory of subregular ionic solutions was used. The approximation of the theory of regular ionic solutions was used to model the activity of a solid solution of oxides while the theory of perfect ionic solutions was used to model the activity of a solid solution of spinels. The isotherms of oxygen solubility in the liquid metal of the Fe–Mg–O, Fe–Al–O, and Fe–Mg–Al–O systems were plotted, and the regions of thermodynamic stability of oxide phases conjugated with the metal melt were determined. In particular, for the Fe–Mg–Al–O system, the region of liquid metal compositions, in equilibrium with which there will be a solid solution of spinels |FeAl2O4, MgAl2O4|ss, was determined. The obtained results of thermodynamic modeling are compared with experimental data.

Keywords:

modeling phase equilibria thermodynamics phase diagram magnesium aluminum deoxidation 

Notes

FUNDING

The work was supported by the Government of the Russian Federation (decree no. 211 of March 16, 2013), agreement no. 02.A03.21.0011.

REFERENCES

  1. 1.
    Zhuchkov, V.I., Lukin, S.V., and Shilina, I.V., Deoxidation of steel by calcium–magnesium–silicon ferroalloys, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 1977, no. 12, pp. 69–71.Google Scholar
  2. 2.
    Zhalybin, V.I. and Ershov, G.S., On the recovery of magnesium lining at smelting of steel alloyed by aluminum, Izv. Akad. Nauk SSSR, Met., 1966, no. 1, pp. 49–53.Google Scholar
  3. 3.
    Xu, H., Cao, W., Dong, H., and Li, J., Effects of aluminium on the microstructure and mechanical properties in 0.2C–5Mn steels under different heat treatment conditions, ISIJ Int., 2015, vol. 55, no. 3, pp. 662–669.CrossRefGoogle Scholar
  4. 4.
    Hilty, D.C. and Grafts, W., The solubility of oxygen in liquid iron containing aluminum, Trans. AIME, 1950, vol. 188, no. 2, pp. 414–424.Google Scholar
  5. 5.
    Gokcen, N.A. and Chipman, J., Aluminium–oxygen equilibrium in liquid iron, Trans. AIME, 1953, vol. 197, pp. 173–178.Google Scholar
  6. 6.
    Mikhailov, G.G., Leonovich, B.I., and Kuznetsov, Yu.S., Termodinamika metallurgicheskikh protsessov i sistem (Thermodynamics of Metallurgical Processes and Systems), Moscow: Mosk. Inst. Stali Splavov, 2009.Google Scholar
  7. 7.
    Chernova, L.A. and Mikhailov, G.G., Thermodynamic characteristics of the interaction of oxygen with metal melts of Fe–V–Me–Si–O–C (Me = Cr and Mn) systems, Russ. J. Phys. Chem. A, 2006, vol. 80, no. 11, pp. 1832–1836.CrossRefGoogle Scholar
  8. 8.
    Mikhailov, G.G. and Chernova, L.A., Thermodynamic analysis of steel deoxidation with calcium and aluminum, Russ. Metall. (Engl. Transl.), 2008, vol. 2008, no. 8, pp. 727–729.CrossRefGoogle Scholar
  9. 9.
    Mikhailov, G.G. and Zherebtsov, D.A., On the interaction of calcium and oxygen in liquid iron, Mater. Sci. Forum, 2016, vol. 843, pp. 52–61.CrossRefGoogle Scholar
  10. 10.
    Jo, S.K., Song, B., and Kim, S.H., Thermodynamics on the formation of spinel (MgO · Al2O3) inclusion in liquid iron containing chromium, Metall. Mater. Trans. B, 2002, vol. 33, pp. 703–709.CrossRefGoogle Scholar
  11. 11.
    Zhang, T., Min, Y., Liu, C., and Jiang, M., Effect of Mg addition on the evolution of inclusions in Al–Ca deoxidized melts, ISIJ Int., 2015, vol. 55, no. 8, pp. 1541–1548.CrossRefGoogle Scholar
  12. 12.
    Du, Y., Zhao, J.R., Zhang, C., Chen, H.L., and Zhang, L.J., Thermodynamic modeling of the Fe–Mg–Si system, J. Min. Metall.,Sect. B, 2007, vol. 43, pp. 39–56.Google Scholar
  13. 13.
    Zhang, X., Han, Q., and Chen, D., Dissolution equilibrium of magnesium vapor in liquid iron, Metall. Trans. B, 1991, vol. 22, pp. 918–921.CrossRefGoogle Scholar
  14. 14.
    Stein, F. and Palm, M., Re-determination of transition temperatures in the Fe–Al system by differential thermal analysis, Int. J. Mater. Res., 2007, vol. 98, no. 7, pp. 580–588.CrossRefGoogle Scholar
  15. 15.
    Hidayat, T., Shishin, D., Jak, E., and Decterov, S.A., Thermodynamic reevaluation of the Fe–O system, Calphad, 2015, vol. 48, pp. 131–144.CrossRefGoogle Scholar
  16. 16.
    Wriedt, H.A., The Mg–O (magnesium–oxygen) system, Bull. Alloy Phase Diagrams, 1987, vol. 8, no. 3, pp. 227–233.CrossRefGoogle Scholar
  17. 17.
    Wriedt, H.A., The Al–O (aluminum–oxygen) system, Bull. Alloy Phase Diagrams, 1985, vol. 6, no. 6, pp. 548–553.CrossRefGoogle Scholar
  18. 18.
    Kubaschewski, O. and Alcock, C.B., Metallurgical Thermochemistry, Oxford: Pergamon, 1979.Google Scholar
  19. 19.
    Darken, L.S. and Gurry, R.W., The system iron–oxygen. II. Equilibrium and thermodynamics of liquid oxide and other phases, J. Am. Chem. Soc., 1946, vol. 68, pp. 798–816.CrossRefGoogle Scholar
  20. 20.
    Wu, P., Eriksson, G., Pelton, A.D., and Blander, M., Prediction of the thermodynamic properties and phase diagrams of silicate systems–evaluation of the FeO–MgO–SiO2 system, ISIJ Int., 1993, vol. 33, no. 1, pp. 26–35.CrossRefGoogle Scholar
  21. 21.
    Slag Atlas, 2nd ed., Düsseldorf: Stahleisen Verlag, 1995, pp. 40–44.Google Scholar
  22. 22.
    Rankin, G.A. and Merwin, H.E., The ternary system CaO–Al2O3–MgO, J. Am. Chem. Soc., 1916, vol. 38, no. 3, pp. 568–588.CrossRefGoogle Scholar
  23. 23.
    Ono, A., Fe–Mg partitioning between spinel and olivine, J. Jpn. Assoc. Min. Petrol.,Econ. Geol., 1983, vol. 78, pp. 115–122.Google Scholar
  24. 24.
    Yang, J., Kuwabara, M., Sakai, T., Uchida, N., Liu, Z., and Sano, M., Simultaneous desulfurization and deoxidation of molten steel with in situ produced magnesium vapor, ISIJ Int., 2007, vol. 47, no. 3, pp. 418–426.CrossRefGoogle Scholar
  25. 25.
    Mizukami, H., Numata, M., and Yamanaka, A., Generation of heterogeneous nucleus in carbon steel during solidification by magnesium vapor injection, ISIJ Int., 2016, vol. 56, no. 8, pp. 1420–1426.CrossRefGoogle Scholar
  26. 26.
    Mikhailov, G.G., Makrovets, L.A., and Smirnov, L.A., Thermodynamic modeling of the interaction of high-level element and oxygen in iron-based melt, Steel Transl., 2015, vol. 45, no. 11, pp. 872–882.CrossRefGoogle Scholar
  27. 27.
    Hasegawa, M., Tsukamoto, T., and Iwase, M., Activity of iron oxide in magnesiowüstite in equilibrium with solid metallic iron, Mater. Trans., 2006, vol. 47, no. 3, pp. 854–860.CrossRefGoogle Scholar
  28. 28.
    Satoh, N., Taniguchi, T., Mishima, S., Oka, T., Miki, T., and Hino, M., Prediction of nonmetallic inclusion formation in Fe–40 mass % Ni–5 mass % Cr alloy production process, Tetsu-to-Hagané, 2009, vol. 95, no. 12, pp. 827–836.CrossRefGoogle Scholar
  29. 29.
    Park, J.H. and Todoroki, H., Control of MgO · Al2O3 spinel inclusions in stainless steels, ISIJ Int., 2010, vol. 50, no. 10, pp. 1333–1346.CrossRefGoogle Scholar
  30. 30.
    Itoh, H., Hino, M., and Ban-Ya, S., Thermodynamics on the formation of non-metallic inclusion of spinel (MgO · Al2O3) in liquid steel, Tetsu-to-Hagané, 1998, vol. 84, no. 2, pp. 85–90.CrossRefGoogle Scholar
  31. 31.
    Steelmaking Data Sourcebook, New York: Gordon and Breach Science, 1988, p. 288.Google Scholar
  32. 32.
    Wang, L.J., Liu, Y.Q., Wang, Q., and Chou, K.C., Evolution mechanisms of MgO · Al2O3 inclusions by cerium in spring steel used in fasteners of high-speed railway, ISIJ Int., 2015, vol. 55, no. 5, pp. 970–975.CrossRefGoogle Scholar
  33. 33.
    Prox, H., Hino, M., and Ban-Ya, S., Assessment of Al deoxidation equilibrium in liquid iron, Tetsu-to-Hagané, 1997, vol. 83, no. 12, pp. 773–778.CrossRefGoogle Scholar
  34. 34.
    Itoh, H., Hino, M., and Ban-Ya, S., Thermodynamics on the formation of spinel nonmetallic inclusion in liquid steel, Metall. Mater. Trans. B, 1997, vol. 28, pp. 953–956.CrossRefGoogle Scholar
  35. 35.
    Janke, D. and Fischer, W.A., Desoxidationsgleichgewichte von Titan, Aluminium und Zirconium in Eisenschmelzen bei 1600°C, Arch. Eisenhüttenwes, 1976, vol. 47, no. 4, pp. 195–198.CrossRefGoogle Scholar
  36. 36.
    Kang, Y., Thunman, M., Sichen, D., Morohoshi, T., Mizukami, K., and Morita, K., Aluminum deoxidation equilibrium of molten iron–aluminum alloy with wide aluminum composition range at 1873 K, ISIJ Int., 2009, vol. 49, no. 10, pp. 1483–1489.CrossRefGoogle Scholar
  37. 37.
    Paek, M.K., Jang, J.M., Kang, Y.B., and Pak, J.J., Aluminum deoxidation equilibria in liquid iron: part I. Experimental, Metall. Mater. Trans. B, 2015, vol. 46, no. 4, pp. 1826–1836.CrossRefGoogle Scholar
  38. 38.
    Fruehan, R.J., Activities in liquid Fe–Al–O and Fe–Ti–O alloys, Metall. Trans., 1970, vol. 1, no. 12, pp. 3403–3410.CrossRefGoogle Scholar
  39. 39.
    Seo, J.-D. and Kim, S.-H., Thermodynamic assessment of Mg deoxidation reaction of liquid iron and equilibria of [Mg]–[Al]–[O] and [Mg]–[S]–[O], Steel Res., 2000, vol. 71, no. 4, pp. 101–106.Google Scholar
  40. 40.
    Jung, I.H., Decterov, S.A., and Pelton, A.D., Computer applications of thermodynamic databases to inclusion engineering, ISIJ Int., 2004, vol. 44, no. 3, pp. 527–536.CrossRefGoogle Scholar
  41. 41.
    Fujii, K., Nagasaka, T., and Hino, M., Activities of the constituents in spinel solid solution and free energies of formation of MgO, MgO · Al2O3, ISIJ Int., 2000, vol. 40, no. 11, pp. 1059–1066.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.Institute of Metallurgy, Ural Branch of Russian Academy of SciencesYekaterinburgRussia

Personalised recommendations