Steel in Translation

, Volume 49, Issue 8, pp 568–573 | Cite as

Use of the Multiple Regression Analysis for Quantitative Estimation of the Mechanical Properties of Strengthened Rebars

  • A. A. KanaevEmail author
  • E. N. Reshetkina
  • A. T. Kanaev


The multiple regression analysis method is used for quantitative estimation of the complex of factors affecting the mechanical properties of the thermomechanically strengthened rebars; this method permits selecting the most valuable quantities characterizing σy, σuts, and δ and assessing the degree of influence of separate elements on these properties within the standards and technological parameters of strengthening. A mathematical model of formation of the strength and plastic characteristics of thermomechanically strengthened rebars is developed, which allows predicting their final mechanical properties. The analysis of the derived relations shows that the established character of the dependences, determined by the signs of coefficients, responds to the physical meaning of a technological factor at consideration.


mathematical model applied statistics rebars strengthening mechanical properties structure water consumption rolling speed self-tempering 



  1. 1.
    Uzlov, I.G., Development of the theory and technology of thermal and thermomechanical hardening of constructional steels, in Fundamental’nye i prikladnye problemy chernoi metallurgii (Fundamental and Applied Problems of Ferrous Metallurgy), Dnepr: Inst. Chern. Metall., Nats. Akad. Nauk Ukr., 2004, no. 8, pp. 250–260.Google Scholar
  2. 2.
    Kutushin, A.A., Uzlov, I.G., Kalmykov, V.V., et al., Vysokoprochnaya armaturnaya stal’ (High-Strength Reinforced Steel), Moscow: Metallurgiya, 1986.Google Scholar
  3. 3.
    Boyarintseva, A.V., Sofroshenkov, A.F., and Muratov, V.M., Influence of discontinuous cooling on the microstructure and properties of 35GS steel reinforcement, Steel Transl., 2003, vol. 33, no. 4, pp. 68–71.Google Scholar
  4. 4.
    Uzlov, I.G., Razdobreev, V.G., Fedorova, I.P., et al., Specific structure and properties of long products from low-carbon and low-alloy steels under low-temperature deformation-thermal treatments, Metall. Gornorudn. Prom-st, 2004, no. 3, pp. 63–68.Google Scholar
  5. 5.
    Cox, D. and Snell, E., Applied Statistics—Principles and Examples, London: Chapman and Hall, 1981.Google Scholar
  6. 6.
    Borovikov, V.P. and Borovikov, I.P., Statistica. Statisticheskii analiz i obrabotka dannykh v srede Windows (Statistica. Statistical Data Analysis for Windows), Moscow: Filin, 1997.Google Scholar
  7. 7.
    Sergeev, A.G. and Krokhin, V.V., Metrologiya (Metrology), Moscow: Logos, 2000.Google Scholar
  8. 8.
    Kanaev, A.T., Bykhin, B.B., Kanaev, A.A., and Kapushchak, A.F., Improvement of thermal hardening modes of rod reinforced steel, Stal’, 1998, no. 12, pp. 46–49.Google Scholar
  9. 9.
    Kanaev, A.T., Sovmeshchennaya deformatsionno-termicheskaya obrabotka sortovogo prokata (Combined Deformation-Thermal Processing of Large Sections), Astana: Master-PO, 2017.Google Scholar
  10. 10.
    Kanaev, A.T., Bogomolov A.V., Kanaev A.A., and Reshotkina E.N., Influence of intermittent quenching and self-tempering on the mechanical properties of rebar steel, Steel Transl., 2018, vol. 48, no. 2, pp. 130–134.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • A. A. Kanaev
    • 1
    Email author
  • E. N. Reshetkina
    • 2
  • A. T. Kanaev
    • 3
  1. 1.Gumilyov Eurasian National UniversityNur-SultanKazakhstan
  2. 2.Arcelor Mittal Temirtau AKKaragandaKazakhstan
  3. 3.Seifullin Kazakh Agro Technical UniversityNur-SultanKazakhstan

Personalised recommendations