Advertisement

Steel in Translation

, Volume 48, Issue 7, pp 446–450 | Cite as

Solid-Fuel Combustion in the Sintering of Siderite Ore

  • B. P. Yur’ev
  • V. A. Dudko
Article
  • 3 Downloads

Abstract

Two technologies are considered for the preparation of solid fuel used in sintering: crushing with portions of roasted siderite ore whose strength is less than that of the fuel; or crushing of the fuel alone and subsequent mixing with the ore portions. On the basis of derivatographic data, kinetic equations are written for the high-temperature combustion of coke fines in a fuel–ore mixture obtained by the two methods. The most flammable fuel fraction in sintering is established. The results indicate that crushing of the fuel mixed with weaker additives is more effective in terms of decreasing the content of fines in the fuel and hence intensifying the combustion of large pieces.

Keywords

sinter production solid fuel crushing roasted siderite ore derivatographic analysis combustion kinetics fuel fractions coke fines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yur’ev, B.P., Melamud, S.G., Spirin, N.A., and Shatsillo, V.V., Tekhnologicheskie i teplotekhnicheskie osnovy podgotovki sideritovykh ryb k metallurgicheskim peredelam: monografiya (Technological and Thermoengineering Principles of Preparation of Siderite Ores for Metallurgical Operations: Monograph), Yekaterinburg: Den’ RA, 2016.Google Scholar
  2. 2.
    Yur’ev, B.P., Gol’tsev, V.A., and Dudko, V.A., Optimization of the siderite ore roasting in shaft furnaces, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2017, no. 7, pp. 46–52.Google Scholar
  3. 3.
    Yur’ev, B.P. and Gol’tsev, V.A., The influence of the composition of siderite ore, construction and regime factors on the performance of shaft furnaces, Stal’, 2013, no. 4, pp. 6–10.Google Scholar
  4. 4.
    Yur’ev, B.P., Oxidative roasting of siderite ore in a shaft furnace, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2007, no. 6, pp. 25–29.Google Scholar
  5. 5.
    Yur’ev, B.P. and Melamud, S.G., Roasting of siderite ore using solid fuel, Stal’, 2012, no. 7, pp. 2–4.Google Scholar
  6. 6.
    Yur’ev, B.P., Melamud, S.G., and Spirin, N.A., Kinetics of dissociation of the Bakal’sk siderite ores, Izv. Vyssh. Uchebn. Zaved., Chern. Metall., 2012, no. 10, pp. 12–14.CrossRefGoogle Scholar
  7. 7.
    Zhunev, A.G. and Yur’ev, B.P. Specific sintering of Bakal’sk siderite ores, Stal’, 2010, no. 7, pp. 10–13.Google Scholar
  8. 8.
    Melamud, S.G., Yur’ev, B.P., and Dudchuk, I.A., Use of siderite ores in sinter production and smelting of cast iron, Stal’, 2015, no. 1, pp. 5–8.Google Scholar
  9. 9.
    Melamud, S.G., Shatsillo, V.V., Yur’ev, B.P., and Zagainov, S.A., Using a concentrate of roasted siderite ore in the production of magnesian agglomerate, Stal’, 2013, no. 7, pp. 2–7.Google Scholar
  10. 10.
    Melamud, S.G., Shatsillo, V.V., Yur’ev, B.P., et al., The production of magnesian agglomerate using Bakal’sk concentrate of calcined siderite ore, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2006, no. 5, pp. 17–29.Google Scholar
  11. 11.
    Melamud, S.G., Zagainov, S.A., Shatsillo, V.V., and Yur’ev, B.P., Influence of the ratio of magnesian agglomerate and non-fluxed pellets on the parameters of blast furnace smelting of cast iron, Chern. Metall., Byull. Nauchno-Tekh. Ekon. Inf., 2006, no. 7, pp. 15–20.Google Scholar
  12. 12.
    Klein, V.I., Bokovikov, B.A., Evsyugin, S.N., et al., Teplotekhnika protsessov aglomeratsii (Thermal Engineering of Agglomeration Processes), Yekaterinburg: Ural. Izd. Poligraf. Tsentr, 2013.Google Scholar
  13. 13.
    Klein, V.I., Maizel’, G.M., Yaroshenko, Yu.G., and Avdeenko, A.A., Teplotekhnicheskie metody analiza aglomeratsionnogo protsessa (Thermal Engineering Analysis of Agglomeration Process), Yekaterinburg: Ural. Gos. Tekh. Univ., Ural Politekh. Inst., 2004.Google Scholar
  14. 14.
    Vegman, E.F., Teoriya i tekhnologiya aglomeratsii (Theory and Technology of Agglomeration), Moscow: Metallurgiya, 1974.Google Scholar
  15. 15.
    Bokovikov, B.A. and Klein, V.I., Combustion zone during agglomeration, Stal’, 2006, no. 6, pp. 40–41.Google Scholar
  16. 16.
    Bersenev, I.S., Klein, V.I., Matyukhin, V.I., and Yaroshenko, Yu.G., Assessing the quality of iron-ore sinter on the basis of its chemical composition, Steel Transl., 2009, vol. 39, no. 10, pp. 843–846.CrossRefGoogle Scholar
  17. 17.
    Zhilkin, V.P. and Doronin, D.N., Proizvodstvo aglomerata. Tekhnologiya, oborudovanie, avtomatizatsiya (Production of Agglomerate: Technology, Equipment, and Automation), Yekaterinburg: Ural. Tsentr PR Reklamy, 2004.Google Scholar
  18. 18.
    Kovalev, D.A., Teoreticheskie osnovy proizvodstva okuskovannogo syr’ya (Theory of Production of Agglomerated Materials), Dnepropetrovsk: IMA-Press, 2011.Google Scholar
  19. 19.
    Bersenev, I.S., Bokovikov, B.A., Klein, V.I., et al., Gas dynamics of the initial sintering bed, Steel Transl., 2010, vol. 40, no. 9, pp. 820–823.CrossRefGoogle Scholar
  20. 20.
    Grekov, V.V., Semenov, A.K., Isaenko, G.E., Klein, V.I., and Kutuzov, A.A., Influence of solid-fuel consumption on sintering, Steel Transl., 2006, vol. 36, no. 6, pp. 46–50.Google Scholar
  21. 21.
    Butorina, I.V., Method of calculating the main indices of the sintering operation, Metallurgist, 2012, vol. 55, nos. 9–10, pp. 640–645.CrossRefGoogle Scholar
  22. 22.
    Esin, O.A. and Gel’d, P.V., Fizicheskaya khimiya pirometallurgicheskikh protsessov (Physical Chemistry of Pyrometallurgical Processes), Sverdlovsk: Metallurgizdat, 1962, part 1.Google Scholar
  23. 23.
    Wendlandt, W.W., Thermal Methods of Analysis, New York: Wiley, 1974.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Ural Federal UniversityYekaterinburgRussia

Personalised recommendations